deuterated water
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 43)

H-INDEX

35
(FIVE YEARS 5)

Cellulose ◽  
2021 ◽  
Author(s):  
Paavo A. Penttilä ◽  
Aleksi Zitting ◽  
Tainise Lourençon ◽  
Michael Altgen ◽  
Ralf Schweins ◽  
...  

Abstract Water interactions and accessibility of the nanoscale components of plant cell walls influence their properties and processability in relation to many applications. We investigated the water-accessibility of nanoscale pores within the fibrillar structures of unmodified Norway spruce cell walls by small-angle neutron scattering (SANS) and Fourier-transform infra-red (FTIR) spectroscopy. The different sensitivity of SANS to hydrogenated ($$\hbox {H}_2\hbox {O}$$ H 2 O ) and deuterated water ($$\hbox {D}_2\hbox {O}$$ D 2 O ) was utilized to follow the exchange kinetics of water among cellulose microfibrils. FTIR spectroscopy was used to study the time-dependent re-exchange of OD groups to OH in wood samples transferred from liquid $$\hbox {D}_2\hbox {O}$$ D 2 O to $$\hbox {H}_2\hbox {O}$$ H 2 O . In addition, the effects of drying on the nanoscale structure and its water-accessibility were addressed by comparing SANS results and the kinetics of water exchange between never-dried and dried/rewetted wood samples. The results of the kinetic analyses allowed to identify two processes with different timescales. The diffusion-driven exchange of water in the spaces between microfibrils, which was observed with both SANS and FTIR, takes place within minutes and rather homogeneously. The second, slower process appeared only in the OD/OH re-exchange followed by FTIR, and it still continued after several weeks of immersion in $$\hbox {H}_2\hbox {O}$$ H 2 O . SANS could not detect any significant difference between the never-dried and dried/rewetted samples, whereas FTIR revealed a small portion of OD groups that resisted the re-exchange and this portion became larger with drying. Graphic abstract


Author(s):  
Tom S. O. Jameson ◽  
Sean P Kilroe ◽  
Jonathan Fulford ◽  
Doaa Reda Abdelrahman ◽  
Andrew John Murton ◽  
...  

Introduction: Short-term disuse leads to muscle loss driven by lowered daily myofibrillar protein synthesis (MyoPS). However, disuse commonly results from muscle damage, and its influence on muscle deconditioning during disuse is unknown. Methods: 21 males (20±1 y, BMI=24±1 kg·m-2 (±SEM)) underwent 7 days of unilateral leg immobilization immediately preceded by 300 bilateral, maximal, muscle-damaging eccentric quadriceps contractions (DAM; n=10) or no exercise (CON; n=11). Participants ingested deuterated water and underwent temporal bilateral thigh MRI scans and vastus lateralis muscle biopsies of immobilized (IMM) and non-immobilized (N-IMM) legs. Results: N-IMM quadriceps muscle volume remained unchanged throughout in both groups. IMM quadriceps muscle volume declined after 2 days by 1.7±0.5% in CON (P=0.031; and by 1.3±0.6% when corrected to N-IMM; P=0.06) but did not change in DAM, and declined equivalently in CON (by 6.4±1.1% [5.0±1.6% when corrected to N-IMM]) and DAM (by 2.6±1.8% [4.0±1.9% when corrected to N-IMM]) after 7 days. Immobilization began to decrease MyoPS compared with N-IMM in both groups after 2 days (P=0.109), albeit with higher MyoPS rates in DAM compared with CON (P=0.035). Frank suppression of MyoPS was observed between days 2-7 in CON (IMM=1.04±0.12, N-IMM=1.86±0.10%·d-1; P=0.002) but not DAM (IMM=1.49±0.29, N-IMM=1.90±0.30%·d-1; P>0.05). Declines in MyoPS and quadriceps volume after 7 days correlated positively in CON (R2=0.403; P=0.035) but negatively in DAM (R2=0.483; P=0.037). Quadriceps strength declined following immobilization in both groups, but to a greater extent in DAM. Conclusion: Prior muscle damaging eccentric exercise increases MyoPS and prevents loss of quadriceps muscle volume after 2 (but not 7) days of disuse.


2021 ◽  
pp. 131029
Author(s):  
Josef Kučera ◽  
Ondřej Peš ◽  
Tomáš Janovič ◽  
Ctirad Hofr ◽  
Lenka Kubinyiová ◽  
...  

Author(s):  
Xiaohua Huang ◽  
Guodong Liu ◽  
Jie Mei

Deuterated water has been applied in hydrogeological tracer tests in recent years. However, there is a contradiction about the conservativeness of artificial deuterium (D/2H). In this study, what circumstances HDO behaved truly conservatively were investigated through laboratory-scale experiments via comparing the widely used tracer chloride (Cl-). And reasons for the non-conservativeness of HDO were discussed comprehensively for the first time. In addition, the advection-dispersion equation (ADE) and dual-domain mass transfer (DDMT) equation were employed to describe the breakthrough curves (BTCs) of tracers. HDO behaved conservatively when it transported in the porous media with high permeability (approximately K > 1m/d), and ADE could describe BTCs successfully. While hysteresis effect of HDO expressed in the media with low permeability. And the lower the permeability of the porous media, the stronger the hysteresis effect. DDMT was more suitable for demonstrating BTCs in low permeability media. Hydrogen bonds between HDO and H2O, the isotopic exchange effect, and the dual-domain model of the media all could lead to the hysteresis effect. The retardation factor (R = 1.712) was used to describe transporting behaviors of HDO in clay firstly. And the threshold hydraulic conductivity (Kcr) and the proportion of immobile regions of HDO were greater than that of Cl-, while dispersion coefficients of HDO were smaller. These could provide further considerations for using deuterium in hydrogeological tracer tests.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4034
Author(s):  
Andor Veltien ◽  
Jack van Asten ◽  
Niveditha Ravichandran ◽  
Robin A. de Graaf ◽  
Henk M. De Feyter ◽  
...  

Increased glucose and choline uptake are hallmarks of cancer. We investigated whether the uptake and conversion of [2H9]choline alone and together with that of [6,6′-2H2]glucose can be assessed in tumors via deuterium metabolic imaging (DMI) after administering these compounds. Therefore, tumors with human renal carcinoma cells were grown subcutaneously in mice. Isoflurane anesthetized mice were IV infused in the MR magnet for ~20 s with ~0.2 mL solutions containing either [2H9]choline (0.05 g/kg) alone or together with [6,6′-2H2]glucose (1.3 g/kg). 2H MR was performed on a 11.7T MR system with a home-built 2H/1H coil using a 90° excitation pulse and 400 ms repetition time. 3D DMI was recorded at high resolution (2 × 2 × 2 mm) in 37 min or at low resolution (3.7 × 3.7 × 3.7 mm) in 2:24 min. Absolute tissue concentrations were calculated assuming natural deuterated water [HOD] = 13.7 mM. Within 5 min after [2H9]choline infusion, its signal appeared in tumor spectra representing a concentration increase to 0.3–1.2 mM, which then slowly decreased or remained constant over 100 min. In plasma, [2H9]choline disappeared within 15 min post-infusion, implying that its signal arises from tumor tissue and not from blood. After infusing a mixture of [2H9]choline and [6,6′-2H2]glucose, their signals were observed separately in tumor 2H spectra. Over time, the [2H9]choline signal broadened, possibly due to conversion to other choline compounds, [[6,6′-2H2]glucose] declined, [HOD] increased and a lactate signal appeared, reflecting glycolysis. Metabolic maps of 2H compounds, reconstructed from high resolution DMIs, showed their spatial tumor accumulation. As choline infusion and glucose DMI is feasible in patients, their simultaneous detection has clinical potential for tumor characterization.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaorong Fu ◽  
Stanisław Deja ◽  
Justin A. Fletcher ◽  
Norma N. Anderson ◽  
Monika Mizerska ◽  
...  

AbstractDe novo lipogenesis (DNL) is disrupted in a wide range of human disease. Thus, quantification of DNL may provide insight into mechanisms and guide interventions if it can be performed rapidly and noninvasively. DNL flux is commonly measured by 2H incorporation into fatty acids following deuterated water (2H2O) administration. However, the sensitivity of this approach is limited by the natural abundance of 13C, which masks detection of 2H by mass spectrometry. Here we report that high-resolution Orbitrap gas-chromatography mass-spectrometry resolves 2H and 13C fatty acid mass isotopomers, allowing DNL to be quantified using lower 2H2O doses and shorter experimental periods than previously possible. Serial measurements over 24-hrs in mice detects the nocturnal activation of DNL and matches a 3H-water method in mice with genetic activation of DNL. Most importantly, DNL is detected in overnight-fasted humans in less than an hour and is responsive to feeding during a 4-h study. Thus, 2H specific MS provides the ability to study DNL in settings that are currently impractical.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christian Tötzke ◽  
Nikolay Kardjilov ◽  
André Hilger ◽  
Nicole Rudolph-Mohr ◽  
Ingo Manke ◽  
...  

AbstractRoot water uptake is an essential process for terrestrial plants that strongly affects the spatiotemporal distribution of water in vegetated soil. Fast neutron tomography is a recently established non-invasive imaging technique capable to capture the 3D architecture of root systems in situ and even allows for tracking of three-dimensional water flow in soil and roots. We present an in vivo analysis of local water uptake and transport by roots of soil-grown maize plants—for the first time measured in a three-dimensional time-resolved manner. Using deuterated water as tracer in infiltration experiments, we visualized soil imbibition, local root uptake, and tracked the transport of deuterated water throughout the fibrous root system for a day and night situation. This revealed significant differences in water transport between different root types. The primary root was the preferred water transport path in the 13-days-old plants while seminal roots of comparable size and length contributed little to plant water supply. The results underline the unique potential of fast neutron tomography to provide time-resolved 3D in vivo information on the water uptake and transport dynamics of plant root systems, thus contributing to a better understanding of the complex interactions of plant, soil and water.


Sign in / Sign up

Export Citation Format

Share Document