Full-Scale Building Structural Health Monitoring by Shake Table Tests and Extreme Learning Machine

2019 ◽  
Vol 38 (2) ◽  
pp. 1939-1947
Author(s):  
Xiaopeng Ren
2021 ◽  
pp. 147592172110064
Author(s):  
Yuequan Bao ◽  
Jian Li ◽  
Tomonori Nagayama ◽  
Yang Xu ◽  
Billie F Spencer ◽  
...  

To promote the development of structural health monitoring around the world, the 1st International Project Competition for Structural Health Monitoring (IPC-SHM, 2020) was initiated and organized in 2020 by the Asia-Pacific Network of Centers for Research in Smart Structures Technology, Harbin Institute of Technology, the University of Illinois at Urbana-Champaign, and four leading companies in the application of structural health monitoring technology. The goal of this competition was to attract more young scholars to engage in the study of structural health monitoring, encouraging them to provide creative and effective solutions for full-scale applications. Recognizing the recent advent and importance of artificial intelligence in structural health monitoring, three competition projects were set up with the data from full-scale bridges: (1) image-based identification of fatigue cracks in bridge girders, (2) data anomaly detection for structural health monitoring, and (3) condition assessment of stay cables using cable tension data. Three corresponding data sets were released at http://www.schm.org.cn and http://sstl.cee.illinois.edu/ipc-shm2020 . Participants were required to be full-time undergraduate students, M.S. students, Ph.D. students, or young scholars within 3 years after obtaining their Ph.D. Both individual and teams (each team had no more than five individuals) could compete. Submissions for the competition included a 10- to 15-page technical paper, a 10-min presentation video with PowerPoint slides, and commented code. The organizing committee then conducted the validation, review, and evaluation. A total of 330 participants in 112 teams from 70 universities and institutions in 12 countries registered for the competition, resulting in 75 papers from 56 teams from 57 different affiliations finally being submitted. Of those submitted, 31, 30, and 14 papers were for Projects 1, 2, and 3, respectively. After completion of the review by the organization committee and awards committee, the top 10, 10, and 5 teams were selected as the prize winners for the three competition projects.


2018 ◽  
Vol 7 (3) ◽  
pp. 30 ◽  
Author(s):  
Chiara Bedon ◽  
Enrico Bergamo ◽  
Matteo Izzi ◽  
Salvatore Noè

In recent years, thanks to the simple and yet efficient design, Micro Electro-Mechanical Systems (MEMS) accelerometers have proven to offer a suitable solution for Structural Health Monitoring (SHM) in civil engineering applications. Such devices are typically characterised by high portability and durability, as well as limited cost, hence resulting in ideal tools for applications in buildings and infrastructure. In this paper, original self-made MEMS sensor prototypes are presented and validated on the basis of preliminary laboratory tests (shaking table experiments and noise level measurements). Based on the well promising preliminary outcomes, their possible application for the dynamic identification of existing, full-scale structural assemblies is then discussed, giving evidence of their potential via comparative calculations towards past literature results, inclusive of both on-site, Experimental Modal Analysis (EMA) and Finite Element Analytical estimations (FEA). The full-scale experimental validation of MEMS accelerometers, in particular, is performed using, as a case study, the cable-stayed bridge in Pietratagliata (Italy). Dynamic results summarised in the paper demonstrate the high capability of MEMS accelerometers, with evidence of rather stable and reliable predictions, and suggest their feasibility and potential for SHM purposes.


2019 ◽  
Vol 19 (5) ◽  
pp. 1524-1541 ◽  
Author(s):  
Alessandro Marzani ◽  
Nicola Testoni ◽  
Luca De Marchi ◽  
Marco Messina ◽  
Ernesto Monaco ◽  
...  

This article reports on the creation of an open database of piezo-actuated and piezo-received guided wave signals propagating in a composite panel of a full-scale aeronautical structure. The composite panel closes the bottom part of a wingbox that, along with the leading edge, the trailing edge, and the wingtip, forms an outer wing demonstrator approximately 4.5 m long and from 1.2 to 2.3 m wide. To create the database, a structural health monitoring system, composed of a software/hardware central unit capable of controlling a network of 160 piezoelectric transducers secondarily bonded on the composite panel, has been realized. The structural health monitoring system has been designed to (1) perform electromechanical impedance measurement at each transducer, in order to check for their reliability and bonding strength, and (2) to operate an active guided wave screening for damage detection in the composite panel. Electromechanical impedance and guided wave measurements were performed at four different testing stages: before loading, before fatigue, before impacts, and after impacts. The database, freely available at http://shm.ing.unibo.it/ , can thus be used to benchmarking, on real-scale structural data, guided wave algorithms for loading, fatigue, as well as damage detection, characterization, and sizing. As an example, in this work, a delay and sum algorithm is applied on the post-impact data to illustrate how the database can be exploited.


2016 ◽  
Vol 15 (4) ◽  
pp. 389-402 ◽  
Author(s):  
Wout Weijtjens ◽  
Tim Verbelen ◽  
Gert De Sitter ◽  
Christof Devriendt

Author(s):  
Wei Chang ◽  
Juin-Fu Chai ◽  
Wen-I Liao

Structural health monitoring of RC structures under seismic loads has recently attracted dramatic attention in the earthquake engineering research community. In this paper, a piezoceramic-based device called “smart aggregate” was used for the health monitoring of a two stories one bay RC frame structure under earthquake excitations. The RC moment frame instrumented with smart aggregates was tested using a shake table with different ground excitation intensities. The distributed piezoceramic-based smart aggregates embedded in the RC structure were used to monitor the health condition of the structure during the tests. The sensitiveness and effectiveness of the proposed piezoceramic-based approach were investigated and evaluated by analyzing the measured responses.


2010 ◽  
Author(s):  
W. I. Liao ◽  
Y. L. Mo ◽  
G. Song ◽  
J. Y. Zhang ◽  
Y. C. Sung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document