Mechanical and Physical Based Artificial Neural Network Models for the Prediction of the Unconfined Compressive Strength of Rock

2020 ◽  
Vol 38 (5) ◽  
pp. 4779-4792 ◽  
Author(s):  
Wasim S. Barham ◽  
Samar R. Rabab’ah ◽  
Hussein H. Aldeeky ◽  
Omar H. Al Hattamleh
Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3708 ◽  
Author(s):  
In-Ji Han ◽  
Tian-Feng Yuan ◽  
Jin-Young Lee ◽  
Young-Soo Yoon ◽  
Joong-Hoon Kim

A new hybrid intelligent model was developed for estimating the compressive strength (CS) of ground granulated blast furnace slag (GGBFS) concrete, and the synergistic benefits of the hybrid algorithm as compared with a single algorithm were verified. While using the collected 269 data from previous experimental studies, artificial neural network (ANN) models with three different learning algorithms namely back-propagation (BP), particle swarm optimization (PSO), and new hybrid PSO-BP algorithms, were constructed and the performance of the models was evaluated with regard to the prediction accuracy, efficiency, and stability through a threefold procedure. It was found that the PSO-BP neural network model was superior to the simple ANNs that were trained by a single algorithm and it is suitable for predicting the CS of GGBFS concrete.


2011 ◽  
Vol 403-408 ◽  
pp. 3587-3593
Author(s):  
T.V.K. Hanumantha Rao ◽  
Saurabh Mishra ◽  
Sudhir Kumar Singh

In this paper, the artificial neural network method was used for Electrocardiogram (ECG) pattern analysis. The analysis of the ECG can benefit from the wide availability of computing technology as far as features and performances as well. This paper presents some results achieved by carrying out the classification tasks by integrating the most common features of ECG analysis. Four types of ECG patterns were chosen from the MIT-BIH database to be recognized, including normal sinus rhythm, long term atrial fibrillation, sudden cardiac death and congestive heart failure. The R-R interval features were performed as the characteristic representation of the original ECG signals to be fed into the neural network models. Two types of artificial neural network models, SOM (Self- Organizing maps) and RBF (Radial Basis Function) networks were separately trained and tested for ECG pattern recognition and experimental results of the different models have been compared. The trade-off between the time consuming training of artificial neural networks and their performance is also explored. The Radial Basis Function network exhibited the best performance and reached an overall accuracy of 93% and the Kohonen Self- Organizing map network reached an overall accuracy of 87.5%.


Sign in / Sign up

Export Citation Format

Share Document