What Can We Expect from the Inclined Satellite Formation for Temporal Gravity Field Determination?

Author(s):  
Hao Zhou ◽  
Zhicai Luo ◽  
Zebing Zhou ◽  
Fan Yang ◽  
Roland Pail ◽  
...  
2020 ◽  
Vol 222 (1) ◽  
pp. 661-677
Author(s):  
Hao Zhou ◽  
Zebing Zhou ◽  
Zhicai Luo ◽  
Kang Wang ◽  
Min Wei

SUMMARY The goal of this contribution is to investigate the expected improvement of temporal gravity field determination via a couple of high-low satellite-to-satellite tracking (HLSST) missions. The simulation system is firstly validated by determining monthly gravity field models within situ GRACE GPS tracking data. The general consistency between the retrieved solutions and those developed by other official agencies indicates the good performance of our software. A 5-yr full-scale simulation is then performed using the full error sources including all error components. Analysis of each error component indicates that orbit error is the main contributor to the overall HLSST-derived gravity field model error. The noise level of monthly solution is therefore expected to reduce 90 per cent in terms of RMSE over ocean when the orbit accuracy improves for a magnitude of one order. As for the current HLSST mission consisting of a current GNSS receiver and an accelerometer (10−10 and 10−9 m s–2 noise for sensitive and non-sensitive axes), it is expected to observe monthly (or weekly) gravity solution at the spatial resolution of about 1300 km (or 2000 km). As for satellite constellations, a significant improvement is expected by adding the second satellite with the inclination of 70° and the third satellite with the inclination of 50°. The noise reduction in terms of cumulative geoid height error is approximately 51 per cent (or 62 per cent) when the observations of two (or three) HLSST missions are used. Moreover, the accuracy of weekly solution is expected to improve 40–70 per cent (or 27–59 per cent) for three (or two) HLSST missions when compared to one HLSST mission. Due to the low financial costs, it is worthy to build a satellite constellation of HLSST missions to fill the possible gaps between the dedicated temporal gravity field detecting missions.


Author(s):  
Oleg Abrikosov ◽  
Focke Jarecki ◽  
Jürgen Müller ◽  
Svetozar Petrovic ◽  
Peter Schwintzer

2009 ◽  
pp. 34-37
Author(s):  
Niraj Manandhar ◽  
Rene Forsberg

This paper sets out to describe the developments of geopotential models and its role in gravity field determination. The paper also focuses in different geopotential models those are available and in use from 1980 onwards till at present with major emphasis placed on WGS84 EGM96 geopotential model.


2014 ◽  
Vol 89 (1) ◽  
pp. 33-48 ◽  
Author(s):  
Adrian Jäggi ◽  
H. Bock ◽  
U. Meyer ◽  
G. Beutler ◽  
J. van den IJssel

2019 ◽  
Vol 11 (8) ◽  
pp. 956 ◽  
Author(s):  
Ulrich Meyer ◽  
Krzysztof Sosnica ◽  
Daniel Arnold ◽  
Christoph Dahle ◽  
Daniela Thaller ◽  
...  

Satellite gravimetry allows for determining large scale mass transport in the system Earth and to quantify ice mass change in polar regions. We provide, evaluate and compare a long time-series of monthly gravity field solutions derived either by satellite laser ranging (SLR) to geodetic satellites, by GPS and K-band observations of the GRACE mission, or by GPS observations of the three Swarm satellites. While GRACE provides gravity signal at the highest spatial resolution, SLR sheds light on mass transport in polar regions at larger scales also in the pre- and post-GRACE era. To bridge the gap between GRACE and GRACE Follow-On, we also derive monthly gravity fields using Swarm data and perform a combination with SLR. To correctly take all correlations into account, this combination is performed on the normal equation level. Validating the Swarm/SLR combination against GRACE during the overlapping period January 2015 to June 2016, the best fit is achieved when down-weighting Swarm compared to the weights determined by variance component estimation. While between 2014 and 2017 SLR alone slightly overestimates mass loss in Greenland compared to GRACE, the combined gravity fields match significantly better in the overlapping time period and the RMS of the differences is reduced by almost 100 Gt. After 2017, both SLR and Swarm indicate moderate mass gain in Greenland.


2019 ◽  
Vol 79 (10) ◽  
Author(s):  
Ignazio Ciufolini ◽  
Antonio Paolozzi ◽  
Erricos C. Pavlis ◽  
Giampiero Sindoni ◽  
John Ries ◽  
...  

Abstract We report the improved test of frame-dragging, an intriguing phenomenon predicted by Einstein’s General Relativity, obtained using 7 years of Satellite Laser Ranging (SLR) data of the satellite LARES (ASI, 2012) and 26 years of SLR data of LAGEOS (NASA, 1976) and LAGEOS 2 (ASI and NASA, 1992). We used the static part and temporal variations of the Earth gravity field obtained by the space geodesy mission GRACE (NASA and DLR) and in particular the static Earth’s gravity field model GGM05S augmented by a model for the 7-day temporal variations of the lowest degree Earth spherical harmonics. We used the orbital estimator GEODYN (NASA). We measured frame-dragging to be equal to $$0.9910 \pm 0.02$$0.9910±0.02, where 1 is the theoretical prediction of General Relativity normalized to its frame-dragging value and $$\pm 0.02$$±0.02 is the estimated systematic error due to modelling errors in the orbital perturbations, mainly due to the errors in the Earth’s gravity field determination. Therefore, our measurement confirms the prediction of General Relativity for frame-dragging with a few percent uncertainty.


1985 ◽  
Vol 59 (3) ◽  
pp. 233-246 ◽  
Author(s):  
R. Rummel ◽  
O. L. Colombo

Sign in / Sign up

Export Citation Format

Share Document