Electrically charged strange quark stars with anisotropic matter: exact analytical solution

2020 ◽  
Vol 52 (5) ◽  
Author(s):  
Grigoris Panotopoulos ◽  
Ilídio Lopes
2004 ◽  
Vol 13 (01) ◽  
pp. 149-156 ◽  
Author(s):  
M. K. MAK ◽  
T. HARKO

An exact analytical solution describing the interior of a charged strange quark star is found under the assumption of spherical symmetry and the existence of a one-parameter group of conformal motions. The solution describes a unique static charged configuration of quark matter with radius R=9.46 km and total mass M=2.86M⊙.


2009 ◽  
Vol 80 (8) ◽  
Author(s):  
Rodrigo Picanço Negreiros ◽  
Fridolin Weber ◽  
Manuel Malheiro ◽  
Vladimir Usov

2019 ◽  
Vol 22 (4) ◽  
pp. 311-317
Author(s):  
Hidezumi Terazawa

New forms of matter such as super-hypernuclei (strange quark matter) and superhypernuclear stars (strange quark stars) as candidates for dark matter are discussed in some detail, based on the so-called "Bodmer–Terazawa–Witten hypothesis" assuming that they are stable absolutely or quasi-stable (decaying only weakly).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hamdy M. Youssef ◽  
Najat A. Alghamdi

Abstract This work is dealing with the temperature reaction and response of skin tissue due to constant surface heat flux. The exact analytical solution has been obtained for the two-temperature dual-phase-lag (TTDPL) of bioheat transfer. We assumed that the skin tissue is subjected to a constant heat flux on the bounding plane of the skin surface. The separation of variables for the governing equations as a finite domain is employed. The transition temperature responses have been obtained and discussed. The results represent that the dual-phase-lag time parameter, heat flux value, and two-temperature parameter have significant effects on the dynamical and conductive temperature increment of the skin tissue. The Two-temperature dual-phase-lag (TTDPL) bioheat transfer model is a successful model to describe the behavior of the thermal wave through the skin tissue.


Sign in / Sign up

Export Citation Format

Share Document