quark star
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 24)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Vol 258 ◽  
pp. 07005
Author(s):  
Kazuo Ghoroku ◽  
Kouji Kashiwa ◽  
Yoshimasa Nakano ◽  
Motoi Tachibana ◽  
Fumihiko Toyoda

In a holographic model, which was used to investigate the color superconducting phase of QCD, a dilute gas of instantons is introduced to study the nuclear matter. The free energy of the nuclear matter is computed as a function of the baryon chemical potential in the probe approximation. Then the equation of state is obtained at low temperature. Using the equation of state for the nuclear matter, the Tolman-Oppenheimer-Volkov equations for a cold compact star are solved. We find the mass-radius relation of the star, which is similar to the one for quark star. This similarity implies that the instanton gas given here is a kind of self-bound matter.


2021 ◽  
Vol 922 (2) ◽  
pp. 214
Author(s):  
Shao-Ze Li ◽  
Yun-Wei Yu ◽  
He Gao ◽  
Zi-Gao Dai ◽  
Xiao-Ping Zheng

Abstract An electron–positron layer can cover the surface of a bare strange star (SS), the electric field in which can excite the vacuum and drive a pair wind by taking away the heat of the star. In order to investigate the pair-emission ability of a proto-SS, we establish a toy model to describe its early thermal evolution, where the initial trapping of neutrinos is specially taken into account. It is found that the early cooling of the SS is dominated by the neutrino diffusion rather than the conventional Urca processes, which leads to the appearance of an initial temperature plateau. During this plateau phase, the surface e ± pair emission can maintain a constant luminosity of 1048 − 1050erg s−1 for about a few to a few tens of seconds, which is dependent on the value of the initial temperature. The total energy released through this e ± wind can reach as high as ∼1051 erg. In principle, this pair wind could be responsible for the prompt emission or extended emission of some gamma-ray bursts.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 70
Author(s):  
Lang Wang ◽  
Jian Hu ◽  
Cheng-Jun Xia ◽  
Jian-Feng Xu ◽  
Guang-Xiong Peng ◽  
...  

The possible existence of stable up-down quark matter (udQM) was recently proposed, and it was shown that the properties of udQM stars are consistent with various pulsar observations. In this work we investigate the stability of udQM nuggets and found at certain size those objects are more stable than others if a large symmetry energy and a small surface tension were adopted. In such cases, a crust made of udQM nuggets exists in quark stars. A new family of white dwarfs comprised entirely of udQM nuggets and electrons were also obtained, where the maximum mass approaches to the Chandrasekhar limit.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 161
Author(s):  
Muhammad Sharif ◽  
Amal Majid

This work aims to extend two isotropic solutions to the anisotropic domain by decoupling the field equations in self-interacting Brans–Dicke theory. The extended solutions are obtained by incorporating an additional source in the isotropic fluid distribution. We deform the radial metric potential to disintegrate the system of field equations into two sets such that each set corresponds to only one source (either isotropic or additional). The system related to the anisotropic source is solved by employing the MIT bag model as an equation of state. Further, we develop two isotropic solutions by plugging well-behaved radial metric potentials in Karmarkar’s embedding condition. The junction conditions at the surface of the star are imposed to specify the unknown constants appearing in the solution. We examine different physical characteristics of the constructed quark star models by using the mass and radius of PSR J1903+327. It is concluded that, in the presence of a massive scalar field, both stellar structures are well-behaved, viable and stable for smaller values of the decoupling parameter.


Pramana ◽  
2021 ◽  
Vol 95 (2) ◽  
Author(s):  
Abdulrahim T Abdalla ◽  
Jefta M Sunzu ◽  
Jason M Mkenyeleye
Keyword(s):  

2021 ◽  
Vol 126 (16) ◽  
Author(s):  
I. Bombaci ◽  
A. Drago ◽  
D. Logoteta ◽  
G. Pagliara ◽  
I. Vidaña

Particles ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 37-44
Author(s):  
Gevorg Hajyan

The integral parameters (mass, radius) of hot proto-quark stars that are formed in supernova explosion are studied. We use the MIT bag model to determine the pressure of up-down and strage quark matter at finite temperature and in the regime where neutrinos are trapped. It is shown that such stars are heated to temperatures of the order of tens of MeV. The maximum possible values of the central temperatures of these stars are determined. It is shown that the energy of neutrinos that are emitted from proto-quark stars is of the order of 250÷300 MeV. Once formed, the proto-quark stars cool by neutrino emission, which leads to a decrease in the mass of these stars by about 0.16–0.25 M⊙ for stars with the rest masses that are in the range Mb=1.22−1.62M⊙.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Peng-Cheng Chu ◽  
Yi Zhou ◽  
Yao-Yao Jiang ◽  
Hong-Yang Ma ◽  
He Liu ◽  
...  

AbstractWe study the thermodynamic properties of asymmetric quark matter and large mass quark stars within the confined-isospin-density-dependent-quark-mass model. We find that the quark matter symmetry energy should be very large in order to describe the recent discovered heavy compact stars PSR J0348+0432 ($$\text {2.01}\pm \text {0.04}M_{\odot }$$ 2.01 ± 0.04 M ⊙ ), MSP J0740+6620 ($$\text {2.14}\pm ^\text {0.10}_\text {0.09}M_{\odot }$$ 2.14 ± 0.09 0.10 M ⊙ of 68.3$$\%$$ % credibility interval and $$\text {2.14}\pm ^\text {0.20}_\text {0.18}M_{\odot }$$ 2.14 ± 0.18 0.20 M ⊙ of 95.4$$\%$$ % credibility interval) and PSR J2215+5135 (2.27$$\pm ^\text {0.10}_\text {0.09}M_{\odot }$$ ± 0.09 0.10 M ⊙ ) as QSs. The tidal deformability $$\Lambda _{1.4}$$ Λ 1.4 of the QSs is also investigated in this work, and the result indicates that $$\Lambda _{1.4}$$ Λ 1.4 may depend on the isospin effects and the strength / orientation distribution of the magnetic fields inside the quark stars.


Sign in / Sign up

Export Citation Format

Share Document