quark stars
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 71)

H-INDEX

33
(FIVE YEARS 5)

Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 34
Author(s):  
José C. Jiménez ◽  
Eduardo S. Fraga

We investigated compact stars consisting of cold quark matter and fermionic dark matter treated as two admixed fluids. We computed the stellar structures and fundamental radial oscillation frequencies of different masses of the dark fermion in the cases of weak and strong self-interacting dark matter. We found that the fundamental frequency can be dramatically modified and, in some cases, stable dark strange planets and dark strangelets with very low masses and radii can be formed.


2021 ◽  
Author(s):  
Abdelghani Errehymy ◽  
G. Mustafa ◽  
Youssef Khedif ◽  
Mohammed Daoud

Abstract The main aim of this manuscript is to explore the existence and salient features of spherically symmetric relativistic quark stars in the background of massive Brans-Dicke gravity. The exact solutions to the modified Einstein field equations are derived for specific forms of coupling and scalar field functions by using the equation of state relating to the strange quark matter that stimulates the phenomenological MIT-Bag model as a free Fermi gas of quarks. We use a well-behaved function along with Karmarkar condition for class-one embedding as well as junction conditions to determine the unknown metric tensors. The radii of the strange compact stars viz., PSR J1416-2230, PSR J1903+327, 4U 1820-30, CenX-3, EXO1785-248 are predicted via their observed mass for different values of the massive Brans-Dicke parameters. We explore the influences of mass of scalar field $m_{\phi}$ as well as coupling parameter $\omega_{BD}$ along with bag constant $\mathcal{B}$ on state determinants and perform several tests on the viability and stability of the constructed stellar model. Conclusively, we find that our stellar system is physically viable and stable as it satisfies all the energy conditions as well as necessary stability criteria under the influence of a gravitational scalar field.


2021 ◽  
Vol 922 (2) ◽  
pp. 266
Author(s):  
Zhan Bai ◽  
Wei-jie Fu ◽  
Yu-xin Liu

Abstract We investigate the nonradial oscillations of newly born neutron stars (NSs) and strange quark stars (SQSs). This is done with the relativistic nuclear field theory with hyperon degrees of freedom employed to describe the equation of state (EoS) for the stellar matter in NSs, and with both the MIT bag model and the Nambu–Jona-Lasinio model adopted to construct the configurations of the SQSs. We find that the gravitational-mode (g-mode) eigenfrequencies of newly born SQSs are significantly lower than those of NSs, which is independent of models implemented to describe the EoS for the strange quark matter. Meanwhile, the eigenfrequencies of the other modes of nonradial oscillations, e.g., fundamental (f)- and pressure (p)-modes, are much larger than those of the g-mode, and are related to the stiffness of the EoSs. In light of the first direct observation of gravitational waves (GWs), it is promising to employ GWs to identify the QCD phase transition in high-density strong-interaction matter.


2021 ◽  
Vol 922 (2) ◽  
pp. 149
Author(s):  
Debabrata Deb ◽  
Banibrata Mukhopadhyay ◽  
Fridolin Weber

Abstract We investigate the properties of anisotropic, spherically symmetric compact stars, especially neutron stars (NSs) and strange quark stars (SQSs), made of strongly magnetized matter. The NSs are described by the SLy equation of state (EOS) and the SQSs by an EOS based on the MIT Bag model. The stellar models are based on an a priori assumed density dependence of the magnetic field and thus anisotropy. Our study shows that not only the presence of a strong magnetic field and anisotropy, but also the orientation of the magnetic field itself, have an important influence on the physical properties of stars. Two possible magnetic field orientations are considered: a radial orientation where the local magnetic fields point in the radial direction, and a transverse orientation, where the local magnetic fields are perpendicular to the radial direction. Interestingly, we find that for a transverse orientation of the magnetic field, the stars become more massive with increasing anisotropy and magnetic-field strength and increase in size since the repulsive, effective anisotropic force increases in this case. In the case of a radially oriented magnetic field, however, the masses and radii of the stars decrease with increasing magnetic-field strength because of the decreasing effective anisotropic force. Importantly, we also show that in order to achieve hydrostatic equilibrium configurations of magnetized matter, it is essential to account for both the local anisotropy effects as well as the anisotropy effects caused by a strong magnetic field. Otherwise, hydrostatic equilibrium is not achieved for magnetized stellar models.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Theophanes Grammenos ◽  
Farook Rahaman ◽  
Saibal Ray ◽  
Debabrata Deb ◽  
Sourav Roy Chowdhury

The possibility of strange stars mixed with dark energy to be one of the candidates for dark energy stars is the main issue of the present study. Our investigation shows that quark matter atcs as dark energy after a certain yet unknown critical condition inside the quark stars. Our proposed model reveals that strange stars mixed with dark energy feature a physically acceptable stable model and mimic characteristics of dark energy stars. The plausible connections are shown through the mass-radius relation as well as the entropy and temperature. We particularly note that a two-fluid distribution is a major reason for the anisotropic nature of the spherical stellar system.


2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Zurab Berezhiani ◽  
Riccardo Biondi ◽  
Massimo Mannarelli ◽  
Francesco Tonelli

AbstractThe oscillation of neutron n into mirror neutron $$n'$$ n ′ , its mass degenerate partner from dark mirror sector, can gradually transform the neutron stars into the mixed stars consisting in part of mirror dark matter. In quark stars $$n-n'$$ n - n ′ transitions are suppressed. We study the structure of mixed stars and derive the mass-radius scaling relations between the configurations of purely neutron star and maximally mixed star (MMS) containing equal amounts of ordinary and mirror components. In particular, we show that the MMS masses can be at most $$M^{\mathrm{max}}_{NS}/\sqrt{2}$$ M NS max / 2 , where $$M^\mathrm{max}_{NS}$$ M NS max is a maximum mass of a pure neutron star allowed by a given equation of state. We evaluate $$n-n'$$ n - n ′ transition rate in neutron stars, and show that various astrophysical limits on pulsar properties exclude the transition times in a wide range $$10^{5}\,\text {year}< \tau _\varepsilon < 10^{15}\,\text {year}$$ 10 5 year < τ ε < 10 15 year . For short transition times, $$\tau _\varepsilon < 10^5$$ τ ε < 10 5  year, the different mixed stars of the same mass can have different radii, depending on their age, which possibility can be tested by the NICER measurements. We also discuss subtleties related with the possible existence of mixed quark stars, and possible implications for the gravitational waves from the neutron star mergers and associated electromagnetic signals.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Peng-Cheng Chu ◽  
Xiao-Hua Li ◽  
He Liu ◽  
Jia-Wei Zhang

Author(s):  
M. K. Jasim ◽  
Anirudh Pradhan ◽  
Ayan Banerjee ◽  
Takol Tangphati ◽  
Grigoris Panotopoulos

The observations of pulsars with masses close to [Formula: see text] have put strong constraints on the equation-of-state (EoS) of neutron-rich matter at supranuclear densities. Moreover, the exact internal composition of those objects is largely unknown to us. Aiming to reach the [Formula: see text] limit, here we investigate the impact of electric charge on properties of compact stars assuming that the charge distribution is proportional to the mass density. The study is carried out by solving the Tolman–Oppenheimer–Volkoff (TOV) equation for a well-motivated exotic quark matter in the color-flavor-locked (CFL) phase of color superconductivity. The existence of the CFL phase may be the true ground state of hadronic matter with the possibility of the existence of a pure stable quark star (QS). Concerning the equation-of-state, we obtain structural properties of quark stars and compute the mass, the radius as well as the total electric charge of the star. We analyze the dependence of the physical properties of these QSs depending on the free parameters with special attention on mass–radius relation. We also briefly discuss the mass versus central mass density [Formula: see text] relation for stability, the effect of electric charge and compactness. Finally, our results are compared with the recent observations data on mass–radius relationship.


Sign in / Sign up

Export Citation Format

Share Document