quark matter
Recently Published Documents


TOTAL DOCUMENTS

1391
(FIVE YEARS 61)

H-INDEX

70
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Huaimin Chen ◽  
Cheng-Jun Xia ◽  
Guang-Xiong Peng

Abstract The properties of strange quark matter and the structures of (proto-)strange stars are studied within the framework of a baryon density-dependent quark mass model, where a new quark mass scaling and self-consistent thermodynamic treatment are adopted. Our results show that the perturbative interaction has a strong impact on the properties of strange quark matter. It is found that the energy per baryon increases with temperature, while the free energy decreases and eventually becomes negative. At fixed temperatures, the pressure at the minimum free energy per baryon is zero, suggesting that the thermodynamic self-consistency is preserved. Additionally, the sound velocity v in quark matter approaches to the extreme relativistic limit (c=p3) as the density increases. By increasing the strengths of confinement parameter D and perturbation parameter C, the tendency for v to approach the extreme relativistic limit at high density is slightly weakened. For (proto-)strange stars, in contrast to the quark mass scalings adopted in previous publications, the new quark mass scaling can accommodate massive proto-strange stars with their maximum mass surpassing twice the solar mass by considering the isentropic stages along the star evolution line, where the entropy per baryon of the star matter was set to be 0.5 and 1 with the lepton fraction Yl=0.4.



2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Y. Yamamoto ◽  
N. Yasutake ◽  
Th. A. Rijken


Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 34
Author(s):  
José C. Jiménez ◽  
Eduardo S. Fraga

We investigated compact stars consisting of cold quark matter and fermionic dark matter treated as two admixed fluids. We computed the stellar structures and fundamental radial oscillation frequencies of different masses of the dark fermion in the cases of weak and strong self-interacting dark matter. We found that the fundamental frequency can be dramatically modified and, in some cases, stable dark strange planets and dark strangelets with very low masses and radii can be formed.



2022 ◽  
Vol 258 ◽  
pp. 05004
Author(s):  
Tyler Gorda

The propagation of long-wavelength gluons through a dense QCD medium at high baryon chemical potential μB is qualitatively modified by the effects of screening, arising from scatterings off the high-momentum quarks in the medium. This same screening phenomenon also impacts gluons occurring in loop corrections to the pressure of cold quark matter, leading to contributions from the parametric scale αs1/2μB, starting at next-to-next-to-leading order (N2LO) in the strong coupling constant αs. At next-to-next-to-next-to-leading order (N3LO), interactions between these long-wavelength gluonic modes contribute to the pressure. These interaction corrections have recently been computed in Ref [1, 2], and the inclusion of these interactions slightly improves the convergence of the equation of state of cold quark matter. In these proceedings, we present these results and provide details summarizing how this lengthy calculation was performed.



2022 ◽  
Vol 258 ◽  
pp. 07008
Author(s):  
Oleksii Ivanytskyi ◽  
David Blaschke ◽  
Konstantin Maslov

We present a novel relativistic density-functional approach to modeling quark matter with a mechanism to mimic confinement. The quasiparticle treatment of quarks provides their suppression due to large quark selfenergy already at the mean-field level. We demonstrate that our approach is equivalent to a chiral quark model with medium-dependent couplings. The dynamical restoration of the chiral symmetry is ensured by construction of the density functional. Beyond the mean field, quark correlations in the pseudoscalar channel are described within the Gaussian approximation. This explicitly introduces pionic states into the model. Their contribution to the thermodynamic potential is analyzed within the Beth–Uhlenbeck framework. The modification of the meson mass spectrum in the vicinity of thee (de)confinement transition is interpreted as the Mott transition. Supplemented with the vector repulsion and diquark pairing the model is applied to construct a hybrid quark-hadron EoS of cold compact-star matter. We study the connection of such a hybrid EoS with the stellar mass-radius relation and tidal deformability. The model results are compared to various observational constraints including the NICER radius measurement of PSR J0740+6620 and the tidal deformability constraint from GW170817. The model is shown to be consistent with the constraints, still allowing for further improvement by adjusting the vector repulsion and diquark pairing couplings.



2022 ◽  
Vol 258 ◽  
pp. 07004
Author(s):  
Niko Jokela

The holographic models for dense QCD matter work surprisingly well. A general implication seems that the deconfinement phase transition dictates the maximum mass of neutron stars. The nuclear matter phase turns out to be rather stiff which, if continuously merged with nuclear matter models based on effective field theories, leads to the conclusion that neutron stars do not have quark matter cores in the light of all current astrophysical data. We comment that as the perturbative QCD results are in stark contrast with strong coupling results, any future simulations of neutron star mergers incorporating corrections beyond ideal fluid should proceed cautiously. For this purpose, we provide a model which treats nuclear and quark matter phases in a unified framework at strong coupling.





2021 ◽  
Vol 104 (11) ◽  
Author(s):  
N. Sadooghi ◽  
S. M. A. Tabatabaee Mehr ◽  
F. Taghinavaz
Keyword(s):  


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 493
Author(s):  
Germán Lugones ◽  
Ana Gabriela Grunfeld

We review the properties of hybrid stars with a quark matter core and a hadronic mantle, focusing on the role of key micro-physical properties such as the quark/hadron surface and curvature tensions and the conversion speed at the interface between both phases. We summarize the results of works that have determined the surface and curvature tensions from microscopic calculations. If these quantities are large enough, mixed phases are energetically suppressed and the quark core would be separated from the hadronic mantle by a sharp interface. If the conversion speed at the interface is slow, a new class of dynamically stable hybrid objects is possible. Densities tens of times larger than the nuclear saturation density can be attained at the center of these objects. We discuss possible formation mechanisms for the new class of hybrid stars and smoking guns for their observational identification.





Sign in / Sign up

Export Citation Format

Share Document