Molecular evidence of genetic diversity changes in pea (Pisum sativum L.) germplasm after long-term maintenance

2010 ◽  
Vol 58 (3) ◽  
pp. 439-451 ◽  
Author(s):  
Jaroslava Cieslarová ◽  
Petr Smýkal ◽  
Zuzana Dočkalová ◽  
Pavel Hanáček ◽  
Stanislav Procházka ◽  
...  
PROTOPLASMA ◽  
2012 ◽  
Vol 250 (1) ◽  
pp. 95-102 ◽  
Author(s):  
Sergei Ivanov ◽  
Elena Shopova ◽  
Pavel Kerchev ◽  
Iskren Sergiev ◽  
Lyuba Miteva ◽  
...  

2008 ◽  
Vol 34 (8) ◽  
pp. 1330-1338 ◽  
Author(s):  
Xu-Xiao ZONG ◽  
Jian-Ping GUAN ◽  
Shu-Min WANG ◽  
Qing-Chang LIU

2019 ◽  
Author(s):  
Emily S. Bellis ◽  
Elizabeth A. Kelly ◽  
Claire M. Lorts ◽  
Huirong Gao ◽  
Victoria L. DeLeo ◽  
...  

ABSTRACTHost-parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple crop Sorghum bicolor (L.) Moench and its association with the parasitic weed Striga hermonthica (Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghum LOW GERMINATION STIMULANT 1 (LGS1) are broadly distributed among African landraces and geographically associated with S. hermonthica occurrence. However, low frequency of these alleles within S. hermonthica-prone regions and their absence elsewhere implicate potential tradeoffs restricting their fixation. LGS1 is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and belowground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with tradeoffs, we find signatures of balancing selection surrounding LGS1 and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR-Cas9 edited sorghum further indicate the benefit of LGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comes at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities.SIGNIFICANCE STATEMENTUnderstanding co-evolution in crop-parasite systems is critical to management of myriad pests and pathogens confronting modern agriculture. In contrast to wild plant communities, parasites in agricultural ecosystems are usually expected to gain the upper hand in co-evolutionary ‘arms races’ due to limited genetic diversity of host crops in cultivation. Here, we develop a framework to characterize associations between genome variants in global landraces (traditional varieties) of the staple crop sorghum with the distribution of the devastating parasitic weed Striga hermonthica. We find long-term maintenance of diversity in genes related to parasite resistance, highlighting an important role of host adaptation for co-evolutionary dynamics in smallholder agroecosystems.


2021 ◽  
Author(s):  
◽  
Kimberly Anne Miller

<p>As habitat loss, introduced predators, and disease epidemics threaten species worldwide, translocation provides one of the most powerful tools for species conservation. However, reintroduced populations of threatened species are often founded by a small number of individuals (typically 30 in New Zealand) and generally have low success rates. The loss of genetic diversity combined with inbreeding depression in a small reintroduced population could reduce the probability of establishment and persistence. Effective management of genetic diversity is therefore central to the success of reintroduced populations in both the short- and long-term. Using population modelling and empirical data from source and reintroduced populations of skinks and tuatara, I examined factors that influence inbreeding dynamics and the long-term maintenance of genetic diversity in translocated populations. The translocation of gravid females aided in increasing the effective population size after reintroduction. Models showed that supplementation of reintroduced populations reduced the loss of heterozygosity over 10 generations in species with low reproductive output, but not for species with higher output. Harvesting from a reintroduced population for a second-order translocation accelerated the loss of heterozygosity in species with low intrinsic rates of population growth. Male reproductive skew also accelerated the loss of genetic diversity over 10 generations, but the effect was only significant when the population size was small. Further, when populations at opposite ends of a species' historic range are disproportionately vulnerable to extinction and background inbreeding is high, genetic differentiation among populations may be an artefact of an historic genetic gradient coupled with rapid genetic drift. In these situations, marked genetic differences should not preclude hybridising populations to mitigate the risks of inbreeding after reintroduction. These results improve translocation planning for many species by offering guidelines for maximising genetic diversity in founder groups and managing populations to improve the long-term maintenance of diversity. For example, founder groups should be larger than 30 for  reintroductions of species with low reproductive output, high mortality rates after release, highly polygynous mating systems, and high levels of background inbreeding. This study also provides a basis for the development of more complex models of losses of genetic diversity after translocation and how genetic drift may affect the long-term persistence of these valuable  populations.</p>


Sign in / Sign up

Export Citation Format

Share Document