An intact cytokinin-signaling pathway is required for Bacillus sp. LZR216-promoted plant growth and root system architecture altereation in Arabidopsis thaliana seedlings

2017 ◽  
Vol 84 (3) ◽  
pp. 507-518 ◽  
Author(s):  
Jianfeng Wang ◽  
Yongqiang Zhang ◽  
Jie Jin ◽  
Qien Li ◽  
Chenzhou Zhao ◽  
...  
2014 ◽  
Vol 86 (1-2) ◽  
pp. 35-50 ◽  
Author(s):  
Miguel Martínez-Trujillo ◽  
Alfonso Méndez-Bravo ◽  
Randy Ortiz-Castro ◽  
Fátima Hernández-Madrigal ◽  
Enrique Ibarra-Laclette ◽  
...  

2020 ◽  
Vol 8 (4) ◽  
pp. 471 ◽  
Author(s):  
Thanh Nguyen Chu ◽  
Le Van Bui ◽  
Minh Thi Thanh Hoang

The objectives of this study were to evaluate the plant growth promoting effects on Arabidopsis by Pseudomonas sp. strains associated with rhizosphere of crop plants grown in Mekong Delta, Vietnam. Out of all the screened isolates, Pseudomonas PS01 isolated from maize rhizosphere showed the most prominent plant growth promoting effects on Arabidopsis and maize (Zea mays). We also found that PS01 altered root system architecture (RSA). The full genome of PS01 was resolved using high-throughput sequencing. Phylogenetic analysis identified PS01 as a member of the Pseudomonas putida subclade, which is closely related to Pseudomonas taiwanensis.. PS01 genome size is 5.3 Mb, assembled in 71 scaffolds comprising of 4820 putative coding sequence. PS01 encodes genes for the indole-3-acetic acid (IAA), acetoin and 2,3-butanediol biosynthesis pathways. PS01 promoted the growth of Arabidopsis and altered the root system architecture by inhibiting primary root elongation and promoting lateral root and root hair formation. By employing gene expression analysis, genetic screening and pharmacological approaches, we suggested that the plant-growth promoting effects of PS01 and the alteration of RSA might be independent of bacterial auxin and could be caused by a combination of different diffusible compounds and volatile organic compounds (VOCs). Taken together, our results suggest that PS01 is a potential candidate to be used as bio-fertilizer agent for enhancing plant growth.


Plant Science ◽  
2007 ◽  
Vol 172 (4) ◽  
pp. 684-691 ◽  
Author(s):  
Randy Ortiz Castro ◽  
Miguel Martínez Trujillo ◽  
José López Bucio ◽  
Carlos Cervantes ◽  
Joseph Dubrovsky

Plant Science ◽  
2007 ◽  
Vol 173 (1) ◽  
pp. 71 ◽  
Author(s):  
Randy Ortiz Castro ◽  
Miguel Martínez Trujillo ◽  
José López Bucio ◽  
Carlos Cervantes

Sign in / Sign up

Export Citation Format

Share Document