Joint Regulation of Power Flow and Short Circuit Current Limitations with the Aid of a Phase-Shifting Transformer

2018 ◽  
Vol 51 (5) ◽  
pp. 584-592 ◽  
Author(s):  
A. S. Brilinskii ◽  
G. A. Evdokunin ◽  
R. I. Mingazov ◽  
N. N. Petrov ◽  
V. S. Chudnyi
2014 ◽  
Vol 960-961 ◽  
pp. 1000-1005
Author(s):  
Gang Chen ◽  
Fan Tang ◽  
Yu Fei Teng ◽  
Hua Zhang ◽  
Li Jie Ding

In this paper, the feasibility analysis of the utilization of phase shifting transformers (PSTs) to improve the AC outward transmission capacity of Sichuan power grid (SCPG) is presented. Firstly, the authors analyze the working principle of PST, as well as the rules for selecting its location. Then, the AC outward transmission limit of SCPG is studied with PSASP software. Finally, the PST is used to change the power flow distribution of lines on border of SCPG. Simulations results show that the PST can significantly improve the AC outward transmission capacity of SCPG. At the same time, short-circuit current of SCPG is also reduced.


Electricity ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 524-553
Author(s):  
Haneen Bawayan ◽  
Mohamed Younis

The inclusion of distributed energy resources (DER) in Microgrids (MGs) comes at the expense of increased changes in current direction and magnitude. In the autonomous mode of MG operation, the penetration of synchronous distributed generators (DGs) induces lower short circuit current than when the MG operates in the grid-connected mode. Such behavior impacts the overcurrent relays and makes the protection coordination difficult. This paper introduces a novel adaptive protection system that includes two phases to handle the influence of fault current variations and enable the MG to sustain its operation. The first phase optimizes the power flow by minimizing the generators’ active power loss while considering tolerable disturbances. For intolerable cases, the second phase opts to contain the effect of disturbance within a specific area, whose boundary is determined through correlation between primary/backup relay pairs. A directional overcurrent relay (DOCR) coordination optimization is formulated as a nonlinear program for minimizing the operating time of the relays within the contained area. Validation is carried out through the simulation of the IEEE 9, IEEE 14, and IEEE 15 bus systems as an autonomous MG. The simulation results demonstrate the effectiveness of our proposed protection system and its superiority to a competing approach in the literature.


2012 ◽  
Vol 260-261 ◽  
pp. 525-531 ◽  
Author(s):  
Salman Badkubi

This paper presents the comprehensive implementation of Distributed Static Series Compensator (DSSC) to limit the fault currents in power systems. This is the first time that the limitation of fault currents with D-FACTS devices is addressed. DSSC is one of the D-FACTS families whichoperate in a similar manner as Static Synchronous Series Compensator (SSSC) but in smaller size, lower price and more capability. The effectiveness of the DSSC in fault current limitation is investigated through the series voltage effect upon the line. The short circuit current limitation strategy presented here exhibited that besides of the power flow control which is carried out by DSSC; it can also perform this additional function. In the following the potency of the DSSC in reduction of instantaneous voltage dip range during fault current limiting mode is clarified. Furthermore, it is disclosed that with performing more DSSC in the power system, the entire system voltage dip will be improved. In order to validate the claims, computer simulations using PSCAD/EMTDC are exploited.


2015 ◽  
Vol 785 ◽  
pp. 388-392 ◽  
Author(s):  
Hasmaini Mohamad ◽  
Shahrani Shahbudin ◽  
Nofri Yenita Dahlan

Interconnection of Distributed Generation (DG) in distribution system presents many potential benefits as well as drawbacks. The impacts of DG might vary with the types of generator. This paper presents a study on the impacts of synchronous DG's interconnection in distribution system. Steady state analysis is carried out to analyze the impact of DG on voltage profile and short circuit current considering before and after DG interconnection. Dynamic analysis is also performed for investigating the performance of DG when a part of distribution system is being islanded. Results show that the penetration of DG contributes to the changes of power flow in the system, hence give impacts to the overall system performance.


2014 ◽  
Vol 1070-1072 ◽  
pp. 897-901
Author(s):  
Guang Ming Lu ◽  
Wei Zhang ◽  
Jian Feng Yan ◽  
Yong Jun Yu ◽  
Zhi Hong Yu ◽  
...  

In daily operation process,the results of online short-circuit current calculation and fault wave recording is different, the differences between the two results affected the dispatcher’s decision. In-depth analysis of the calculation process and finding the possible causes of the differences should be done. The on-line PSASP short-circuit current calculation based on power flow and scheme was studied. The boundary conditions and calculation models of two methods were studied, the influence of the modeling scope and equivalent circuits to the short-circuit current was also studied. Fault wave recording calculated short-circuit current through forward calculation, the middle to both sides calculation and backward calculation, and the differences of the three calculation mode were also analyzed. Through the above analysis and comparison, online data equivalent to 220kV high voltage side of the transformer greatly impacts short-circuit current, but effective value calculation method of fault wave recording has a little impact on the short-circuit current, mainly in the following reasons, the first one is that non-dispatching power plant is equivalent to a load, the second one is that several different types of load is equivalent to a load using one load model, the third one is that all devices connecting to low voltage side of the 220kV transformers are equivalent to 220kV. Conclusions of the analysis can provide the basis for the practical work of online short-circuit current calculation.


2013 ◽  
Vol 805-806 ◽  
pp. 1082-1086
Author(s):  
Jun Li ◽  
Zhi Fei Chen ◽  
Jun Xia Qian ◽  
Hui Gang Zhang

Considering that microgrid (MG) can be controlled flexibly, its short circuit-current is limited and power flow is bidirectional. The paper presents a new relay protection scheme of microgrid based specific harmonic injection method. The injective harmonic flows all over microgrid and the amplitude of specific harmonic current will enhance in fault occasion. So the above characteristic can solve the problem of fault position and the symmetric characteristic can complete the identification of fault type. The discussion about the compatibility of microgrid protection and conventional distribution network line protection. At last, the combined microgrid model is built in Matlab/Simulink environment. The simulation result demonstrated that the above method can complete the identification of fault position and type and it also can coordinate with the traditional line protection well.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Shan Yang ◽  
Xiangqian Tong

Power flow calculation and short circuit calculation are the basis of theoretical research for distribution network with inverter based distributed generation. The similarity of equivalent model for inverter based distributed generation during normal and fault conditions of distribution network and the differences between power flow and short circuit calculation are analyzed in this paper. Then an integrated power flow and short circuit calculation method for distribution network with inverter based distributed generation is proposed. The proposed method let the inverter based distributed generation be equivalent toIθbus, which makes it suitable to calculate the power flow of distribution network with a current limited inverter based distributed generation. And the low voltage ride through capability of inverter based distributed generation can be considered as well in this paper. Finally, some tests of power flow and short circuit current calculation are performed on a 33-bus distribution network. The calculated results from the proposed method in this paper are contrasted with those by the traditional method and the simulation method, whose results have verified the effectiveness of the integrated method suggested in this paper.


Author(s):  
Sergey V. Smolovik ◽  
Andrey S. Brilinskiy ◽  
Vladimir S. Chudny ◽  
Radmir I. Mingazov ◽  
Nikolay N. Petrov

2013 ◽  
Vol 325-326 ◽  
pp. 624-627 ◽  
Author(s):  
Ming Jun Chen ◽  
Chen Zhu Xuan ◽  
Xin Kai Lian

when the photovoltaic power generation and thermoelectric power factory connect into the distribution network , the system change from one source to several sources. it will change the construction of the system and the system power flow ,and also the size and direction of short-circuit current. It is harder to prepare the grid protection devices and set value for the protection. This paper studied the complex electronic systems which contains wind farms and thermoelectric power factory, analysis the change of voltage and current of each bus when the fault happen after the photovoltaic power generation connected into the system, and also talk about how the fault location affect the system fault component .Then conduct the expression of the fault current of each line to provide the basis for the study of multiterminal supply network protection strategy.


Sign in / Sign up

Export Citation Format

Share Document