overcurrent relay
Recently Published Documents


TOTAL DOCUMENTS

323
(FIVE YEARS 104)

H-INDEX

23
(FIVE YEARS 4)

10.6036/10118 ◽  
2022 ◽  
Vol 97 (1) ◽  
pp. 64-70
Author(s):  
Manikandan Selvaraj ◽  
Manigandan Thathan

The increased availability of protections of distributed system is a major role by ensuring the continuity of electrical power supply. The optimization process for a distributed system is to coordinate with overcurrent relay protection with adaptive overcurrent relay model. Here the protection of the system is an important factor since the protection methods play a vital role in distributed systems. The conventional methods discussed the current in the power system to reduce the fault current tolerance value by using various optimization algorithms like Antlion and Butterfly optimization techniques. The distributed three-phase system uses the IEEE bus network with adaptive overcurrent relay model, which produces the best output as compared to the conventional method. Here the particle swarm optimization (C-SBO) procedure is used to improve the relay setting and it reduces the fault current across the relay.


2021 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Abdul Wadood ◽  
Shahbaz Khan ◽  
Bakht Muhammad Khan ◽  
Husan Ali ◽  
Zabdur Rehman

In electrical power systems, directional overcurrent relay (DOCR) coordination is assumed to be an essential component of the system for protection purposes. To diminish and reduce power losses, the coordination between these relays ought to be kept at an ideal value to minimalize the overall operating time of all primary-relay shortcoming situations. The coordination of DOCR is a complex and profoundly compelling nonlinear problem. The objective function is to minimalize the overall total operating time of all essential relays to minimize inordinate breakdown and interference. Coordination is performed using the marine predator algorithm (MPA), inspired by a widespread foraging strategy, namely Lévy and Brownian movements, to search for global optimal solutions in order to resolve the DOCRs coordination issue. The results acquired from MPA are equated with other state-of-the-art algorithms, and it was observed that the proposed algorithm outperforms other algorithms.


2021 ◽  
Author(s):  
Rimsha Fazal ◽  
Arooj Aslam ◽  
Habib Ullah Manzoor ◽  
Tareq Manzoor

Abstract A high voltage protection system is designed to protect the system against the hazards like instant high voltage condition like lightening voltage in the rain, power variation in the transmission lines etc. In these conditions, our system may face a voltage twice and thrice greater than its original nominal ratings. In this paper, performance of four different relays (overcurrent relay, over and under voltage relay, distance relay and differential relay) have been calculated based on operating time in 400KV high voltage AC transmission line of 80-250km under different faults, modeled on MATLAB for the identification of different types of faults in a transmission line. These relays can differentiate between the normal operating condition and fault conditions. In this paper simulation comparison of these four relays is presented by comparing their operating time in Single line to ground fault (LG), three phase fault (LLLG) and Double phase to ground fault (LLG). The output waveforms are observed under the normal condition or no-fault condition and in the fault condition and response time is calculated to operate a circuit breaker.


Electricity ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 524-553
Author(s):  
Haneen Bawayan ◽  
Mohamed Younis

The inclusion of distributed energy resources (DER) in Microgrids (MGs) comes at the expense of increased changes in current direction and magnitude. In the autonomous mode of MG operation, the penetration of synchronous distributed generators (DGs) induces lower short circuit current than when the MG operates in the grid-connected mode. Such behavior impacts the overcurrent relays and makes the protection coordination difficult. This paper introduces a novel adaptive protection system that includes two phases to handle the influence of fault current variations and enable the MG to sustain its operation. The first phase optimizes the power flow by minimizing the generators’ active power loss while considering tolerable disturbances. For intolerable cases, the second phase opts to contain the effect of disturbance within a specific area, whose boundary is determined through correlation between primary/backup relay pairs. A directional overcurrent relay (DOCR) coordination optimization is formulated as a nonlinear program for minimizing the operating time of the relays within the contained area. Validation is carried out through the simulation of the IEEE 9, IEEE 14, and IEEE 15 bus systems as an autonomous MG. The simulation results demonstrate the effectiveness of our proposed protection system and its superiority to a competing approach in the literature.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7192
Author(s):  
Aayush Shrivastava ◽  
Abhishek Sharma ◽  
Manjaree Pandit ◽  
Vibhu Jately ◽  
Brian Azzopardi

A directional overcurrent relay is commonly used to protect the power distribution networks of a distributed system. The selection of the appropriate settings for the relays is an important component of the protection strategies used to isolate the faulty parts of the system. The rapid growth of distributed generation (DG) systems present new challenges to these protection schemes. The effect of solar photovoltaic power plants on relay coordination is studied initially in this research work. A protection strategy was formulated to guarantee that the increased penetration of solar photovoltaic (PV) plants does not affect the relay coordination time. This paper addresses these issues associated with a high penetration of DG through the use of a hybrid protection scheme. The protection strategy is divided into two parts. The first part is based on an optimal fault current limiter value estimated with respect to constraints and the optimal time multiplier setting, and then the coordination time interval is estimated with respect to constraint in Part II. The results of these analyses show that a hybrid protection scheme can effectively handle the complexity of distributed generation (DG) and dynamic relay coordination problems. In this research, three optimization algorithms have been used for calculating the estimated value of impedance fault current limiter (Zfcl) and time multiplier setting (TMS). The response time of hybrid protection schemes is very important. If the computational time of their proposed algorithms is less than their actual computational time, then their response time to address the issue is also less. The performance in all algorithms was identified to arrive at a conclusion that the grey wolf optimized algorithm (GWO) algorithm can substantially reduce the computational time needed to implement hybrid protection algorithms. The GWO algorithm takes a computational time of 0.946 s, achieving its feasible solution in less than 1 s.


Sign in / Sign up

Export Citation Format

Share Document