Analysis of Different Types of Power Circuits and Algorithms for Excitation Control of TVV-500 Turbogenerators of Nuclear Power Plants in Normal and Emergency Operating Regimes

2020 ◽  
Vol 54 (2) ◽  
pp. 208-219
Author(s):  
V. V. Rozhkov ◽  
K. K. Krutikov ◽  
S. G. Butrimov ◽  
V. N. Ivanov
2004 ◽  
Vol 261-263 ◽  
pp. 821-826
Author(s):  
Sung Gyu Jung ◽  
Chang Soon Lee ◽  
In Gyu Park ◽  
Se Hwan Lee ◽  
Tae Eun Jin

In-service inspections (ISI) of pipes in the nuclear power plants are currently performed based on mandated requirements in the ASME Section XI, which is based on deterministic approach of the critical welds. The 20 years of ISI experience in U.S.A. has revealed less correlation between the critical welds and actual failures, and much conservatism in current ISI requirements. To reduce those problems, risk-informed ISI technology has been developed and proved to be useful. This paper presented a method for predicting piping failure probabilities in an application of risk-informed ISI, and analyzed the effect of input parameters on piping failure probabilities. Results generated using this approach revealed that the calculated failure probabilities can be sensitive to the different types of stressors, crack size distribution, inspection interval, etc..


Ergonomics ◽  
2013 ◽  
Vol 56 (7) ◽  
pp. 1070-1085 ◽  
Author(s):  
Qin Gao ◽  
Yang Wang ◽  
Fei Song ◽  
Zhizhong Li ◽  
Xiaolu Dong

Author(s):  
Francesco Bertoncini ◽  
Mauro Cappelli ◽  
Francesco Cordella ◽  
Marco Raugi

On-line monitoring for installed piping in Nuclear Power Plants (NPPs), as well as for Oil & Gas and other kind of plants, is crucial to early detect local ageing effects and locate single defects before they may result in critical failures. All the actions able to prevent failures are of great value especially if non-invasive and allowing an In-Service Inspection (ISI). In particular the Long Term Operation (LTO) and Plant Life Extension (PLEX) may be invalidated from radiation, thermal, mechanical stresses besides their own ageing. Hence on-line monitoring techniques are of much interest especially if they assure the required safety levels and at the same time are simple and cost-effective. Guided Waves (GW) satisfy these requirements since they are structure-borne ultrasonic waves that propagate themselves without interfering along the same pipe structure, which in turns through its geometric boundaries serves as a confining structure for the GW used to test its integrity. The frequencies used for GW testing extend up to 250 kHz, thus allowing a long-range inspection of pipes (tens of meters in favorable circumstances). The experimental conditions (e.g. temperature, complex piping structure, wall thickness, materials) have to be considered since they strongly affect the results but GW generated through magnetostrictive sensors are expected to overcome such issues due to their robustness and positioning ease. In this paper, new experimental tests conducted using the proposed methodology for steel pipes having different types of structural complexity are described.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wang Zhenying ◽  
Shi Yanming ◽  
Xu Huibo ◽  
Zhang Lijun ◽  
Zhou Shiqing ◽  
...  

For pressurized water reactor nuclear power plants, in order to prevent the release of radioactive substances into environment, fission product barriers (FPBs) are constructed based on the concept of defense-in-depth, including fuel clad, reactor coolant system (RCS), and containment; the status of these FPBs is then acting as an important dimension to decision-making of emergency action levels (EALs). For CPR1000 nuclear power plants, state functions defined in state-oriented emergency operating procedure (SOP) are used to characterize postaccident physical conditions; their degradation substantially represents the challenges on fundamental safety functions and then on the integrity of FPBs in like manner, so degradation of these state functions is referred to as determining initial conditions of each FPB, by which the link between SOP and EALs is established. Then, an intelligent FPB monitoring system (FPBMS) aiming to automatically monitor states of FPBs is developed, verified, and validated. The pioneering work, by building bridges between state functions and initial conditions of FPBs and then computerizing them innovatively, proves that dynamical monitoring of states of FPBs during accident evolvement and real-time indication of loss or potential loss of FPBs can be achieved, which is most helpful in decision-making of EALs.


Sign in / Sign up

Export Citation Format

Share Document