Statistical Entropy of Reissner-Nordstrom Black Hole Computed by Generalized Uncertainty Principle

2009 ◽  
Vol 48 (6) ◽  
pp. 1841-1847 ◽  
Author(s):  
Feng He ◽  
YanHong Zhou ◽  
Fan Zhao ◽  
LianCheng Wang
2018 ◽  
Vol 33 (32) ◽  
pp. 1850185 ◽  
Author(s):  
M. A. Anacleto ◽  
Ines G. Salako ◽  
F. A. Brito ◽  
E. Passos

In this paper, we consider the metric of a (2[Formula: see text]+[Formula: see text]1)-dimensional rotating acoustic black hole in the neo-Newtonian theory to compute the Hawking temperature, and applying the quantum statistical method, we calculate the statistical entropy using a corrected state density due to the generalized uncertainty principle (GUP). In our calculations, we have shown that the obtained entropy is finite and correction terms are generated. Moreover, the computation of the entropy for this method does not present logarithmic corrections.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Deyou Chen ◽  
Zhonghua Li

Hawking’s calculation is unable to predict the final stage of the black hole evaporation. When effects of quantum gravity are taken into account, there is a minimal observable length. In this paper, we investigate fermions’ tunnelling from the charged and rotating black strings. With the influence of the generalized uncertainty principle, the Hawking temperatures are not only determined by the rings, but also affected by the quantum numbers of the emitted fermions. Quantum gravity corrections slow down the increases of the temperatures, which naturally leads to remnants left in the evaporation.


Sign in / Sign up

Export Citation Format

Share Document