Observation of Non-Hermitian Quantum Correlation Criterion in Mesoscopic Optomechanical System

2015 ◽  
Vol 55 (4) ◽  
pp. 2097-2109 ◽  
Author(s):  
Wenlin Li ◽  
Fengyang Zhang ◽  
Chong Li ◽  
Heshan Song
Author(s):  
Tesfay Gebremariam Tesfahannes ◽  
Merkebu Dereje Getahune

In this paper, we investigate the steady-state of quantum correlation measurement of hybrid optomechanical systems. The first system consists of a single optomechanical system simultaneously coupled to a mechanical oscillator. While the second system is a hybrid optomechanical system consisting of an atomic ensemble placed in between the optical cavity and mirror. For both optomechanical systems, we formulate the Hamiltonian and the explicit expression of the covariance matrix leading to the dynamic of the system. Under the linearization approximation, we investigate the steady-state quantum correlations which are quantified through the correlation function of non-Hermitian operators, while the logarithmic negativity is used to quantify the amount of quantum entanglement between the subsystems. Furthermore, our proposed quantum correlation function can be used to quantify the entangled bipartite states that are correlative and transfer information. It is found that the transfer of quantum correlations between the subsystem is related to the detuning and coupling strength. Our results provide a realistic route toward remote quantum entanglement detection and a framework of future realistic fiber-optic quantum network operating applications.


2019 ◽  
Vol 99 (6) ◽  
Author(s):  
Wen-Zhao Zhang ◽  
Li-Bo Chen ◽  
Jiong Cheng ◽  
Yun-Feng Jiang

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Till Jonas Frederick Johann ◽  
Ugo Marzolino

AbstractEntanglement is one of the strongest quantum correlation, and is a key ingredient in fundamental aspects of quantum mechanics and a resource for quantum technologies. While entanglement theory is well settled for distinguishable particles, there are five inequivalent approaches to entanglement of indistinguishable particles. We analyse the different definitions of indistinguishable particle entanglement in the light of the locality notion. This notion is specified by two steps: (i) the identification of subsystems by means of their local operators; (ii) the requirement that entanglement represent correlations between the above subsets of operators. We prove that three of the aforementioned five entanglement definitions are incompatible with any locality notion defined as above.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 462
Author(s):  
Ji Xia ◽  
Fuyin Wang ◽  
Chunyan Cao ◽  
Zhengliang Hu ◽  
Heng Yang ◽  
...  

Optomechanical nanocavities open a new hybrid platform such that the interaction between an optical cavity and mechanical oscillator can be achieved on a nanophotonic scale. Owing to attractive advantages such as ultrasmall mass, high optical quality, small mode volume and flexible mechanics, a pair of coupled photonic crystal nanobeam (PCN) cavities are utilized in this paper to establish an optomechanical nanosystem, thus enabling strong optomechanical coupling effects. In coupled PCN cavities, one nanobeam with a mass meff~3 pg works as an in-plane movable mechanical oscillator at a fundamental frequency of . The other nanobeam couples light to excite optical fundamental supermodes at and 1554.464 nm with a larger than 4 × 104. Because of the optomechanical backaction arising from an optical force, abundant optomechanical phenomena in the unresolved sideband are observed in the movable nanobeam. Moreover, benefiting from the in-plane movement of the flexible nanobeam, we achieved a maximum displacement of the movable nanobeam as 1468 . These characteristics indicate that this optomechanical nanocavity is capable of ultrasensitive motion measurements.


2021 ◽  
Vol 20 (3) ◽  
Author(s):  
Tie Wang ◽  
Cheng-Hua Bai ◽  
Dong-Yang Wang ◽  
Shutian Liu ◽  
Shou Zhang ◽  
...  

2021 ◽  
Vol 126 (4) ◽  
Author(s):  
Ryuichi Ohta ◽  
Loïc Herpin ◽  
Victor M. Bastidas ◽  
Takehiko Tawara ◽  
Hiroshi Yamaguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document