optomechanical systems
Recently Published Documents


TOTAL DOCUMENTS

256
(FIVE YEARS 68)

H-INDEX

34
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Tobias Kippenberg ◽  
Amir Youssefi ◽  
Andrea Bancora ◽  
Shingo Kono ◽  
Mahdi Chegnizadeh ◽  
...  

Abstract Cavity optomechanics enables controlling mechanical motion via radiation pressure interaction [1–3], and has contributed to the quantum control of engineered mechanical systems ranging from kg scale LIGO mirrors to nano-mechanical systems, enabling entanglement [4, 5], squeezing of mechanical objects [6], to position measurements at the standard quantum limit [7], non-reciprocal [8] and quantum transduction [9]. Yet, nearly all prior schemes have employed single- or few-mode optomechanical systems. In contrast, novel dynamics and applications are expected when utilizing optomechanical arrays and lattices [10], which enable to synthesize non-trivial band structures, and have been actively studied in the field of circuit QED [11–14]. Superconducting microwave optomechanical circuits are a promising platform to implement such lattices [15], but have been compounded by strict scaling limitations. Here we overcome this challenge and realize superconducting circuit optomechanical lattices. We demonstrate non-trivial topological microwave modes in 1-D optomechanical chains as well as 2-D honeycomb lattices, realizing the canonical SuSchrieffer-Heeger (SSH) model [16–18]. Exploiting the embedded optomechanical interaction, we show that it is possible to directly measure the mode functions of the bulk band modes, as well as the topologically protected edge states, without using any local probe [19–21] or inducing perturbation [22, 23]. This enables us to reconstruct the full underlying lattice Hamiltonian beyond tight-binding approximations, and directly measure the existing residual disorder. The latter is found to be sufficiently small to observe fully hybridized topological edge modes. Such optomechanical lattices, accompanied by the measurement techniques introduced, of-fers an avenue to explore out of equilibrium physics in optomechanical lattices such as quan-tum [24] and quench [25] dynamics, topological properties [10, 26, 27] and more broadly, emergent nonlinear dynamics in complex optomechanical systems with a large number of degrees of freedoms [28–31].


Author(s):  
Yu Cang ◽  
Yabin Jin ◽  
Bahram Djafari-Rouhani ◽  
George Fytas

Abstract Phononic crystals (PnCs) are capable to manipulate the flow of elastic energy through their periodic structures and emerge as a promising field in the last two decades. Thanks to the advances in microfabrication technologies and developments of multifunctional materials, the engineering of periodic structures moves forward to the nanometer scale. Hence, the relevant frequencies of elastic waves are pushed toward the gigahertz regime where strong photon-phonon interactions trigger the applications of PnCs towards information and communication technologies. In this review, we present the experimental achievements on hypersonic PnCs involving microfabrication technologies to realize the desired structures and characterization of their band structures for unraveling phonon propagation modulation. Some application-orientated research directions are proposed in terms of advances in fabrication and characterization technologies and the development of electro-optomechanical systems.


2021 ◽  
pp. 1-11
Author(s):  
Mehrad Gavahi ◽  
Hong Rong Li

In this work, a model of optomechanical system was investigated by analyzing the entanglement dynamics of two related mechanical oscillators in a modified system. Geometrical shapes effects of optical cavities on entanglement of a representative optomechanical system were investigated by means of performing numerical analysis. It was signified that the steady-state or the dynamic behavior of optomechanical engagement could be created owing to the strength of mechanical pairs, which are strong towards the oscillating temperature. In addition, the mentioned entanglement dynamics were seen to be entirely related to the natural state’s stability. Furthermore, rendering the mechanical damping effects, the critical mechanical coupling strength-related analytical expression, where the transition from a steady state to a dynamic clamp occurs, was reported. In the studied system, two identical mechanical oscillators were formed in different conditions of the optical cavities shapes.


2021 ◽  
Vol 33 (4) ◽  
pp. 042010
Author(s):  
Fabian Kranert ◽  
Jana Budde ◽  
Moritz Hinkelmann ◽  
Jörg Neumann ◽  
Dietmar Kracht ◽  
...  

2021 ◽  
pp. 104996
Author(s):  
Yu Wu ◽  
Qinghong Liao ◽  
Aixi Chen ◽  
Wenjie Nie

2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Deng-Gao Lai ◽  
Wei Qin ◽  
Bang-Pin Hou ◽  
Adam Miranowicz ◽  
Franco Nori

2021 ◽  
Author(s):  
Junya Yang ◽  
Zhen Yang ◽  
chengsong zhao ◽  
Rui Peng ◽  
Shi-Lei Chao ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bei-Bei Li ◽  
Lingfeng Ou ◽  
Yuechen Lei ◽  
Yong-Chun Liu

Abstract Cavity optomechanical systems enable interactions between light and mechanical resonators, providing a platform both for fundamental physics of macroscopic quantum systems and for practical applications of precision sensing. The resonant enhancement of both mechanical and optical response in the cavity optomechanical systems has enabled precision sensing of multiple physical quantities, including displacements, masses, forces, accelerations, magnetic fields, and ultrasounds. In this article, we review the progress of precision sensing applications using cavity optomechanical systems. The review is organized in the following way: first we will introduce the physical principles of optomechanical sensing, including a discussion of the noises and sensitivity of the systems, and then review the progress in displacement sensing, mass sensing, force sensing, atomic force microscope (AFM) and magnetic resonance force microscope (MRFM), accelerometry, magnetometry, and ultrasound sensing, and introduce the progress of using quantum techniques especially squeezed light to enhance the performance of the optomechanical sensors. Finally, we give a summary and outlook.


Sign in / Sign up

Export Citation Format

Share Document