scholarly journals The Non-Relativistic Many-Body Quantum-Mechanical Hamiltonian with Diamagnetic Current-Current Interaction

Author(s):  
Ladislaus Alexander Bányai

AbstractWe extend the standard solid-state quantum mechanical Hamiltonian containing only Coulomb interactions between the charged particles by inclusion of the (transverse) current-current diamagnetic interaction starting from the non-relativistic QED restricted to the states without photons and neglecting the retardation in the photon propagator. This derivation is supplemented with a derivation of an analogous result along the non-rigorous old classical Darwin-Landau-Lifshitz argumentation within the physical Coulomb gauge.

Author(s):  
Ladislaus Alexander Bányai

We extend the standard solid-state quantum mechanical Hamiltonian containing only Coulomb interactions between the charged particles by inclusion of the (transverse) current-current diamagnetic interaction starting form the non-relativistic QED restricted to the states without photons and neglecting the retardation in the photon propagator. This derivation is supplemented with a derivation of an analogous result along the non-rigorous old classical Darwin-Landau-Lifshitz argumentation within the physical Coulomb gauge.


Author(s):  
Ladislaus Alexander Banyai ◽  
Mircea Bundaru

We describe here the coherent formulation of electromagnetism in the nonrelativistic quantummechanical many-body theory. We use the mathematical frame of the field theory and its quantization in the spirit of the QED. This is necessary because of the manifold of misinterpretations emerging from the hystorical development of quantum mechanics, starting from the Schrödinger equation of a single particle in the presence of given electromagnetic fields, followed by the many-body theories of many charged identical particles having just Coulomb interactions inspired from the classical electromagnetic theory of point-like charges. However, this later is known to be inconsistent due to the self-interaction. This way could not be continued further to include properly the magnetic forces between the charged particles and lead to a lot of confusion about the interpretation of the magnetic field in the Hamiltonian, as well as about the gauge invariance. We emphasize the importance of the distinction between the applied (external fields) and the field in the matter. All these problems are length properly solved within the non-relativistic QED, nevertheless the confusion dominates in all the problems related to the magnetic properties of the solid state.


2021 ◽  
pp. 2150393
Author(s):  
Qingshuang Zhi ◽  
Kongfa Chen ◽  
Zelong He

In this paper, several four-quantum-dot topological structures are designed. The influence of the interdot coupling strength and intradot Coulomb interactions on the conductance is discussed. The location of the anti-resonance band can be manipulated by tuning the interdot coupling strength, which suggests a physical scheme of an effective quantum switch. The Fano anti-resonance peak may evolve into a resonance peak. For the particular value of the interdot coupling strength, two Fano anti-resonances collapse and bound states in the continuum are formed. Moreover, many-body effect makes the number of anti-resonance bands increase. This study provides a theoretical basis for the design of quantum computing devices.


2002 ◽  
Vol 106 (41) ◽  
pp. 9529-9532 ◽  
Author(s):  
Hannes H. Loeffler ◽  
Jorge Iglesias Yagüe ◽  
Bernd M. Rode

2007 ◽  
Vol 73 (4) ◽  
pp. 599-611 ◽  
Author(s):  
D. B. MELROSE

AbstractThe collision integral that describes the evolution of a distribution of particles in a plasma due to Coulomb interactions between themselves or with other particles is generalized to include relativistic effects and the current–current interaction (in addition to the charge–charge interaction). This is achieved through a covariant version of a conventional derivation based on correlation functions for fluctuations in the plasma. The covariant theory is used to distinguish between longitudinal (charge–charge) and transverse (current–current) interactions. For highly relativistic particles, the current–current contribution is half the charge–charge contribution when Debye screening is unimportant, and is unaffected by Debye screening. It is shown that the classical theory is reproduced by a quantum electrodynamics calculation for electron–electron (Møller) scattering in the limit of small momentum transfer.


Author(s):  
Eric B. Lindgren ◽  
Benjamin Stamm ◽  
Yvon Maday ◽  
Elena Besley ◽  
A. J. Stace

Two experimental studies relating to electrostatic self-assembly have been the subject of dynamic computer simulations, where the consequences of changing the charge and the dielectric constant of the materials concerned have been explored. One series of calculations relates to experiments on the assembly of polymer particles that have been subjected to tribocharging and the simulations successfully reproduce many of the observed patterns of behaviour. A second study explores events observed following collisions between single particles and small clusters composed of charged particles derived from a metal oxide composite. As before, observations recorded during the course of the experiments are reproduced by the calculations. One study in particular reveals how particle polarizability can influence the assembly process. This article is part of the theme issue ‘Modern theoretical chemistry’.


Author(s):  
Elliott H. Lieb ◽  
Robert Seiringer ◽  
Jan Philip Solovej ◽  
Jakob Yngvason

Sign in / Sign up

Export Citation Format

Share Document