scholarly journals L$\ddot {u}$der Rule, Von Neumann Rule and Cirelson’s Bound of Bell CHSH Inequality

Author(s):  
Asmita Kumari ◽  
A. K. Pan
Keyword(s):  
2003 ◽  
Vol 3 (2) ◽  
pp. 157-164
Author(s):  
H. Bechmann-Pasquinucci ◽  
N. Gisin

We present a generalized Bell inequality for two entangled quNits. On one quNit the choice is between two standard von Neumann measurements, whereas for the other quNit there are N^2 different binary measurements. These binary measurements are related to the intermediate states known from eavesdropping in quantum cryptography. The maximum violation by \sqrt{N} is reached for the maximally entangled state. Moreover, for N=2 it coincides with the familiar CHSH-inequality.


2003 ◽  
Vol 01 (01) ◽  
pp. 115-133 ◽  
Author(s):  
JOSÉ L. CERECEDA

In this paper we show a Clauser-Horne (CH) inequality for two three-level quantum systems or qutrits, alternative to the CH inequality given by Kaszlikowski et al. [Phys. Rev. A65, 032118 (2002)]. In contrast to this latter CH inequality, the new one is shown to be equivalent to the Clauser-Horne-Shimony-Holt (CHSH) inequality for two qutrits given by Collins et al. [Phys. Rev. Lett. 88, 040404 (2002)]. Both the CH and CHSH inequalities exhibit the strongest resistance to noise for a nonmaximally entangled state for the case of two von Neumann measurements per site, as first shown by Acin et al. [Phys. Rev. A65, 052325 (2002)]. This equivalence, however, breaks down when one takes into account the less-than-perfect quantum efficiency of detectors. Indeed, for the noiseless case, the threshold quantum efficiency above which there is no local and realistic description of the experiment for the optimal choice of measurements is found to be [Formula: see text] for the CH inequality, whereas it is equal to [Formula: see text] for the CHSH inequality.


2019 ◽  
Author(s):  
Serban-Valentin Stratila ◽  
Laszlo Zsido

2004 ◽  
Vol 174 (12) ◽  
pp. 1371 ◽  
Author(s):  
Mikhail I. Monastyrskii
Keyword(s):  

Author(s):  
Sandip Tiwari

Information is physical, so its manipulation through devices is subject to its own mechanics: the science and engineering of behavioral description, which is intermingled with classical, quantum and statistical mechanics principles. This chapter is a unification of these principles and physical laws with their implications for nanoscale. Ideas of state machines, Church-Turing thesis and its embodiment in various state machines, probabilities, Bayesian principles and entropy in its various forms (Shannon, Boltzmann, von Neumann, algorithmic) with an eye on the principle of maximum entropy as an information manipulation tool. Notions of conservation and non-conservation are applied to example circuit forms folding in adiabatic, isothermal, reversible and irreversible processes. This brings out implications of fluctuation and transitions, the interplay of errors and stability and the energy cost of determinism. It concludes discussing networks as tools to understand information flow and decision making and with an introduction to entanglement in quantum computing.


Author(s):  
D. E. Edmunds ◽  
W. D. Evans

This chapter is concerned with closable and closed operators in Hilbert spaces, especially with the special classes of symmetric, J-symmetric, accretive and sectorial operators. The Stone–von Neumann theory of extensions of symmetric operators is treated as a special case of results for compatible adjoint pairs of closed operators. Also discussed in detail is the stability of closedness and self-adjointness under perturbations. The abstract results are applied to operators defined by second-order differential expressions, and Sims’ generalization of the Weyl limit-point, limit-circle characterization for symmetric expressions to J-symmetric expressions is proved.


Author(s):  
Peter Mann

This chapter focuses on Liouville’s theorem and classical statistical mechanics, deriving the classical propagator. The terms ‘phase space volume element’ and ‘Liouville operator’ are defined and an n-particle phase space probability density function is constructed to derive the Liouville equation. This is deconstructed into the BBGKY hierarchy, and radial distribution functions are used to develop n-body correlation functions. Koopman–von Neumann theory is investigated as a classical wavefunction approach. The chapter develops an operatorial mechanics based on classical Hilbert space, and discusses the de Broglie–Bohm formulation of quantum mechanics. Partition functions, ensemble averages and the virial theorem of Clausius are defined and Poincaré’s recurrence theorem, the Gibbs H-theorem and the Gibbs paradox are discussed. The chapter also discusses commuting observables, phase–amplitude decoupling, microcanonical ensembles, canonical ensembles, grand canonical ensembles, the Boltzmann factor, Mayer–Montroll cluster expansion and the equipartition theorem and investigates symplectic integrators, focusing on molecular dynamics.


Sign in / Sign up

Export Citation Format

Share Document