Sensitivity analysis of optimal operation of irrigation supply systems with water quality considerations

2004 ◽  
Vol 18 (3) ◽  
pp. 227-253 ◽  
Author(s):  
Dani Cohen ◽  
Uri Shamir ◽  
Gideon Sinai
Author(s):  
Yu.A. Novikova ◽  
I.O. Myasnikov ◽  
A.A. Kovshov ◽  
N.A. Tikhonova ◽  
N.S. Bashketova

Summary. Introduction: Drinking water is one of the most important environmental factors sustaining life and determining human health. The goal of the Russian Federal Clean Water Project is to improve drinking water quality through upgrading of water treatment and supply systems using advanced technologies, including those developed by the military-industrial complex. The most informative and reliable sources of information for assessing drinking water quality are the results of systematic laboratory testing obtained within the framework of socio-hygienic monitoring (SGM) and production control carried out by water supply organizations. The objective of our study was to formulate approaches to organizing quality monitoring programs for centralized cold water supply systems. Materials and methods: We reviewed programs and results of drinking water quality laboratory tests performed by Rospotrebnadzor bodies and institutions within the framework of SGM in 2017–2018. Results: We established that drinking water quality monitoring in the constituent entities of the Russian Federation differs significantly in the number of monitoring points (566 in the Krasnoyarsk Krai vs 10 in Sevastopol) and measured indicators, especially sanitary and chemical ones (53 inorganic and organic substances in the Kemerovo Region vs one indicator in the Amur Region). Discussion: For a more complete and objective assessment of drinking water quality in centralized cold water supply systems, monitoring points should be organized at all stages of water supply with account for the coverage of the maximum number of people supplied with water from a particular network. Thus, the number of points in the distribution network should depend, inter alia, on the size of population served. In urban settlements with up to 10,000 inhabitants, for example, at least 4 points should be organized while in the cities with more than 3,000,000 inhabitants at least 80 points are necessary. We developed minimum mandatory lists of indicators and approaches to selecting priority indices to be monitored at all stages of drinking water supply.


Author(s):  
Soobin Kim ◽  
Yong Sung Kwon ◽  
JongChel Pyo ◽  
Mayzonee Ligaray ◽  
Joong-Hyuk Min ◽  
...  

2013 ◽  
Vol 62 (1) ◽  
pp. 1-13 ◽  
Author(s):  
M. Bakker ◽  
J. H. G. Vreeburg ◽  
L. J. Palmen ◽  
V. Sperber ◽  
G. Bakker ◽  
...  

2019 ◽  
Vol 24 (1) ◽  
pp. 04018057 ◽  
Author(s):  
Yogesh Khare ◽  
Christopher J. Martinez ◽  
Rafael Muñoz-Carpena ◽  
Adelbert “Del” Bottcher ◽  
Andrew James

2021 ◽  
Vol 13 (22) ◽  
pp. 12377
Author(s):  
Wen-Cheng Liu ◽  
Hong-Ming Liu ◽  
Rita Sau-Wai Yam

In this study, a coupled three-dimensional hydrodynamic-ecological model was developed to comprehensively understand the interaction between the hydrodynamics and ecological status of a lake. The coupled model was utilized to explore the hydrodynamics, water quality, and ecological status in an ecologically rich subalpine lake (i.e., Tsuei-Feng Lake (TFL), located in north-central Taiwan). The measured data of water depth, water temperature, water quality, and planktonic biomass were gathered to validate the coupled model. The simulated results with a three-dimensional hydrodynamic and water quality-ecological model reasonably reproduced the variations in observed water depth, water temperature, water quality, and phytoplankton and zooplankton biomass. Sensitivity analysis was implemented to determine the most influential parameter affecting the planktonic biomass. The results of sensitivity analysis indicated that the predation rate on phytoplankton (PRP) significantly affects the phytoplankton biomass, while the basal metabolism rate of zooplankton (BMZ) importantly affects the zooplankton biomass. Furthermore, inflow discharge was the most important environmental factor dominating the phytoplankton and zooplankton biomass of TFL. This implies that the runoff in the catchment area caused by rainfall and the heavy rainfall induced by climate change may affect the planktonic biomass of the lake.


Sign in / Sign up

Export Citation Format

Share Document