Determination of the Dipole Moments of Excited Complexes of Polar Compounds in Proton-Donor Solvents by the Quenching of their Fluorescence

2005 ◽  
Vol 72 (2) ◽  
pp. 196-201 ◽  
Author(s):  
V. S. Pavlovich
1996 ◽  
Vol 49 (9) ◽  
pp. 931 ◽  
Author(s):  
L Chmurzynski ◽  
E Kaczmarczyk ◽  
M Nesterowicz ◽  
G Wawrzyniak ◽  
Z Warnke

The potentiometric titration method has been used to study the equilibria of cationic in sytems formed by substituted pyridine N-oxides in the polar, non-aqueous solvents acetone and methanol. For comparison, the systems with trimethylamine N-oxide as a representative of aliphatic amine N-oxides and pyridine representing parent heterocyclic amines were also studied. The cationic heteroconjugation constants, i.e. the equilibrium constants for conjugation reactions between free and protonated N-bases leading to the formation of unsymmetric BHB'+ cations, were determined in experimental systems with and without proton transfer. It was found that there were significant differences in the values of the cationic heteroconjugation constants determined in these two acid-base systems. The proton-transfer reactions limit and even preclude the determination of the cationic heteroconjugation constants. On this basis it was concluded that the heteroconjugation constants should be determined in systems without proton transfer. In such systems, in the amphiprotic solvent methanol, cationic heteroconjugation was ascertained in all substituted pyridine N-oxide systems, the values of heteroconjugation constants being relatively low (logarithms of their values of the order of 2-2.5), and only negligible in systems involving trimethylamine N-oxide. A more pronounced tendency towards cationic heteroconjugation of the [OHO]+ type was observed in the aprotic protophobic acetone, where heteroconjugation constants were determined for all amine N-oxide systems studied including those containing protonated trimethylamine N-oxide as a proton donor. However, the values of the cationic heteroconjugation constants were found to be, in methanol likewise, relatively low (log KBHB'+ of the order of 2-3). On the contrary, a greater extent of cationic heteroconjugation equilibria was observed in methanol than in acetone in the case of systems containing pyridine, i.e. [NHO]+ type bridges formed by amine N-oxides and heterocyclic amines. In methanol the heteroconjugation constants turned out to be determinable for all such systems studied (logarithms of the equilibrium constants being of the same order as for N-oxide systems), whereas in acetone the hetero constants were indeterminable for all systems.


2018 ◽  
Vol 120 (12) ◽  
pp. 1800250 ◽  
Author(s):  
Jia Chen ◽  
Leshan Zhang ◽  
Qiaona Geng ◽  
Bingyu Jing ◽  
Xiuzhu Yu

1969 ◽  
Vol 47 (20) ◽  
pp. 3767-3771 ◽  
Author(s):  
H. A. Rizk ◽  
N. Youssef ◽  
H. Grace

The application of a modified form of the Onsager equation at the condition of infinite dilution of a polar solute in a polar solvent leads to reasonable dipole moments for water, pyridine, acetone, tert-butyl alcohol, n-butyl alcohol, and β-octyl alcohol, except in the case of water in tert-butyl alcohol at 30 and 40 °C and the case of acetone in n-butyl alcohol at 30 to 50 °C. The initial decrease of the dielectric constant of solvent by addition of solute in each of these two cases is associated with a reduction in the Kirkwood g-factor of solute. In all 12 systems investigated, strong hydrogen bonding occurs between solute and solvent molecules and often between solvent molecules themselves. It is thought that this equation must fail when short-range interactions assume predominant importance, but why it works so well for those cases which are also strongly interacting systems is not clear.


Sign in / Sign up

Export Citation Format

Share Document