Management of calcareous grasslands for Nickerl’s fritillary (Melitaea aurelia) has to consider habitat requirements of the immature stages, isolation, and patch area

2007 ◽  
Vol 12 (6) ◽  
pp. 677-688 ◽  
Author(s):  
Stefan Eichel ◽  
Thomas Fartmann
2021 ◽  
Author(s):  
James D. Karimi ◽  
Jim A. Harris ◽  
Ron Corstanje

Abstract Context Landscape connectivity is assumed to influence ecosystem service (ES) trade-offs and synergies. However, empirical studies of the effect of landscape connectivity on ES trade-offs and synergies are limited, especially in urban areas where the interactions between patterns and processes are complex. Objectives The objectives of this study were to use a Bayesian Belief Network approach to (1) assess whether functional connectivity drives ES trade-offs and synergies in urban areas and (2) assess the influence of connectivity on the supply of ESs. Methods We used circuit theory to model urban bird flow of P. major and C. caeruleus at a 2 m spatial resolution in Bedford, Luton and Milton Keynes, UK, and Bayesian Belief Networks (BBNs) to assess the sensitivity of ES trade-offs and synergies model outputs to landscape and patch structural characteristics (patch area, connectivity and bird species abundance). Results We found that functional connectivity was the most influential variable in determining two of three ES trade-offs and synergies. Patch area and connectivity exerted a strong influence on ES trade-offs and synergies. Low patch area and low to moderately low connectivity were associated with high levels of ES trade-offs and synergies. Conclusions This study demonstrates that landscape connectivity is an influential determinant of ES trade-offs and synergies and supports the conviction that larger and better-connected habitat patches increase ES provision. A BBN approach is proposed as a feasible method of ES trade-off and synergy prediction in complex landscapes. Our findings can prove to be informative for urban ES management.


Author(s):  
Pradya Somboon ◽  
Thanari Phanitchakun ◽  
Jassada Saingamsook ◽  
Rinzin Namgay ◽  
Ralph E Harbach

Abstract Culex longitubus Somboon, Namgay & Harbach is described as a new species of the Mimeticus Subgroup of the subgenus Culex. The larva is most similar to the larva of Cx. tianpingensis Chen from China, but is distinguished by the length of the siphon and the anal papillae, the form of the comb scales and pecten spines, and the development of setae 7-P, 13-T, 1-X, and 4-X. The adults have wing markings and male genitalia similar to those of species of the Mimeticus Complex. Phylogenetic analysis of COI sequences revealed that the new species is closely related to Cx. murrelli Lien of the Mimulus Complex. The immature stages of the new species were found in stagnant pools and marshes at high altitudes in several districts of Bhutan.


2021 ◽  
Vol 30 (2) ◽  
pp. 365-384
Author(s):  
Elena Tello-García ◽  
Nancy Gamboa-Badilla ◽  
Enrique Álvarez ◽  
Laura Fuentes ◽  
Corina Basnou ◽  
...  

2020 ◽  
pp. 1-16
Author(s):  
S. THOBEKA GUMEDE ◽  
DAVID A. EHLERS SMITH ◽  
YVETTE C. EHLERS SMITH ◽  
SAMUKELISIWE P. NGCOBO ◽  
MBALENHLE T. SOSIBO ◽  
...  

Summary Establishing the specific habitat requirements of forest specialists in fragmented natural habitats is vital for their conservation. We used camera-trap surveys and microhabitat-scale covariates to assess the habitat requirements, probability of occupancy and detection of two terrestrial forest specialist species, the Orange Ground-thrush Geokichla gurneyi and the Lemon Dove Aplopelia larvata during the breeding and non-breeding seasons of 2018–2019 in selected Southern Mistbelt Forests of KwaZulu-Natal and the Eastern Cape, South Africa. A series of camera-trap surveys over 21 days were conducted in conjunction with surveys of microhabitat structural covariates. During the wet season, percentage of leaf litter cover, short grass cover, short herb cover, tall herb cover and saplings 0–2 m, stem density of trees 6–10 m and trees 16–20 m were significant structural covariates for influencing Lemon Dove occupancy. In the dry season, stem density of 2–5 m and 10–15 m trees, percentage tall herb cover, short herb cover and 0–2 m saplings were significant covariates influencing Lemon Dove occupancy. Stem density of trees 2–5 m and 11–15 m, percentage of short grass cover and short herb cover were important site covariates influencing Orange Ground-thrush occupancy in the wet season. Our study highlighted the importance of a diverse habitat structure for both forest species. A high density of tall/mature trees was an essential microhabitat covariate, particularly for sufficient cover and food for these ground-dwelling birds. Avian forest specialists play a vital role in providing ecosystem services perpetuating forest habitat functioning. Conservation of the natural heterogeneity of their habitat is integral to management plans to prevent the decline of such species.


Sign in / Sign up

Export Citation Format

Share Document