A novel differential evolution algorithm for solving constrained engineering optimization problems

2017 ◽  
Vol 29 (3) ◽  
pp. 659-692 ◽  
Author(s):  
Ali Wagdy Mohamed
2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Zhongbo Hu ◽  
Shengwu Xiong ◽  
Zhixiang Fang ◽  
Qinghua Su

Many improved differential Evolution (DE) algorithms have emerged as a very competitive class of evolutionary computation more than a decade ago. However, few improved DE algorithms guarantee global convergence in theory. This paper developed a convergent DE algorithm in theory, which employs a self-adaptation scheme for the parameters and two operators, that is, uniform mutation and hidden adaptation selection (haS) operators. The parameter self-adaptation and uniform mutation operator enhance the diversity of populations and guarantee ergodicity. The haS can automatically remove some inferior individuals in the process of the enhancing population diversity. The haS controls the proposed algorithm to break the loop of current generation with a small probability. The breaking probability is a hidden adaptation and proportional to the changes of the number of inferior individuals. The proposed algorithm is tested on ten engineering optimization problems taken from IEEE CEC2011.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Yongzhao Du ◽  
Yuling Fan ◽  
Xiaofang Liu ◽  
Yanmin Luo ◽  
Jianeng Tang ◽  
...  

A multiscale cooperative differential evolution algorithm is proposed to solve the problems of narrow search range at the early stage and slow convergence at the later stage in the performance of the traditional differential evolution algorithms. Firstly, the population structure of multipopulation mechanism is adopted so that each subpopulation is combined with a corresponding mutation strategy to ensure the individual diversity during evolution. Then, the covariance learning among populations is developed to establish a suitable rotating coordinate system for cross operation. Meanwhile, an adaptive parameter adjustment strategy is introduced to balance the population survey and convergence. Finally, the proposed algorithm is tested on the CEC 2005 benchmark function and compared with other state-of-the-art evolutionary algorithms. The experiment results showed that the proposed algorithm has better performance in solving global optimization problems than other compared algorithms.


2019 ◽  
Vol 10 (1) ◽  
pp. 1-28 ◽  
Author(s):  
Ali Wagdy Mohamed ◽  
Ali Khater Mohamed ◽  
Ehab Z. Elfeky ◽  
Mohamed Saleh

The performance of Differential Evolution is significantly affected by the mutation scheme, which attracts many researchers to develop and enhance the mutation scheme in DE. In this article, the authors introduce an enhanced DE algorithm (EDDE) that utilizes the information given by good individuals and bad individuals in the population. The new mutation scheme maintains effectively the exploration/exploitation balance. Numerical experiments are conducted on 24 test problems presented in CEC'2006, and five constrained engineering problems from the literature for verifying and analyzing the performance of EDDE. The presented algorithm showed competitiveness in some cases and superiority in other cases in terms of robustness, efficiency and quality the of the results.


Sign in / Sign up

Export Citation Format

Share Document