scholarly journals Multiscale Cooperative Differential Evolution Algorithm

2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Yongzhao Du ◽  
Yuling Fan ◽  
Xiaofang Liu ◽  
Yanmin Luo ◽  
Jianeng Tang ◽  
...  

A multiscale cooperative differential evolution algorithm is proposed to solve the problems of narrow search range at the early stage and slow convergence at the later stage in the performance of the traditional differential evolution algorithms. Firstly, the population structure of multipopulation mechanism is adopted so that each subpopulation is combined with a corresponding mutation strategy to ensure the individual diversity during evolution. Then, the covariance learning among populations is developed to establish a suitable rotating coordinate system for cross operation. Meanwhile, an adaptive parameter adjustment strategy is introduced to balance the population survey and convergence. Finally, the proposed algorithm is tested on the CEC 2005 benchmark function and compared with other state-of-the-art evolutionary algorithms. The experiment results showed that the proposed algorithm has better performance in solving global optimization problems than other compared algorithms.

2014 ◽  
Vol 598 ◽  
pp. 418-423 ◽  
Author(s):  
Xiao Hong Qiu ◽  
Bo Li ◽  
Zhi Yong Cui ◽  
Jing Li

To get better solution by improving the mutation strategy of Differential Evolution algorithm, a fractal mutation strategy is introduced. The fractal mutation factor of the proposed Fractal Mutation factor Differential Evolution (FMDE) algorithm is simulated by fractal Brownian motion with a different Hurst index. The new algorithm is test on 25 benchmark functions presented at 2005 IEEE Congress on Evolutionary Computation (CEC2005). The optimization results of at least 10 benchmark functions are significantly better than the results obtained by JADE and CoDE, and most of the rest of the test results are approximate. This shows that FMDE can significantly improve the accuracy and adaptability to solve optimization problems.


A new adaptive differential evolution algorithm with restart (ADE-R) is proposed as a general-purpose method for solving continuous optimization problems. Its design aims at simplicity of use, efficiency and robustness. ADE-R simulates a population evolution of real vectors using vector mixing operations with an adaptive parameter control based on the switching of two selected intervals of values for each scaling factor and crossover rate of the basic differential evolution algorithm. It also incorporates a restart technique to supply new contents to the population to prevent premature convergence and stagnation. The method is tested on several benchmark functions covering various types of functions and compared with some well-known and state-of-art methods. The experimental results show that ADE-R is effective and outperforms the compared methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xuxu Zhong ◽  
Peng Cheng

In recent years, Differential Evolution (DE) has shown excellent performance in solving optimization problems over continuous space and has been widely used in many fields of science and engineering. How to avoid the local optimal solution and how to improve the convergence performance of DE are hotpot problems for many researchers. In this paper, an improved differential evolution algorithm based on dual-strategy (DSIDE) is proposed. The DSIDE algorithm has two strategies. (1) An enhanced mutation strategy based on “DE/rand/1,” which takes into account the influence of reference individuals on mutation and has strong global exploration and convergence ability. (2) A novel adaptive strategy for scaling factor and crossover probability based on fitness value has a positive impact on population diversity. The DSIDE algorithm is verified with other seven state-of-the-art DE variants under 30 benchmark functions. Furthermore, Wilcoxon sign rank-sum test, Friedman test, and Kruskal–Wallis test are utilized to analyze the results. The experiment results show that the proposed DSIDE algorithm can significantly improve the global optimization performance.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2163
Author(s):  
Xingping Sun ◽  
Da Wang ◽  
Hongwei Kang ◽  
Yong Shen ◽  
Qingyi Chen

For most of differential evolution (DE) algorithm variants, premature convergence is still challenging. The main reason is that the exploration and exploitation are highly coupled in the existing works. To address this problem, we present a novel DE variant that can symmetrically decouple exploration and exploitation during the optimization process in this paper. In the algorithm, the whole population is divided into two symmetrical subpopulations by ascending order of fitness during each iteration; moreover, we divide the algorithm into two symmetrical stages according to the number of evaluations (FEs). On one hand, we introduce a mutation strategy, DE/current/1, which rarely appears in the literature. It can keep sufficient population diversity and fully explore the solution space, but its convergence speed gradually slows as iteration continues. To give full play to its advantages and avoid its disadvantages, we propose a heterogeneous two-stage double-subpopulation (HTSDS) mechanism. Four mutation strategies (including DE/current/1 and its modified version) with distinct search behaviors are assigned to superior and inferior subpopulations in two stages, which helps simultaneously and independently managing exploration and exploitation in different components. On the other hand, an adaptive two-stage partition (ATSP) strategy is proposed, which can adjust the stage partition parameter according to the complexity of the problem. Hence, a two-stage differential evolution algorithm with mutation strategy combination (TS-MSCDE) is proposed. Numerical experiments were conducted using CEC2017, CEC2020 and four real-world optimization problems from CEC2011. The results show that when computing resources are sufficient, the algorithm is competitive, especially for complex multimodal problems.


2015 ◽  
Vol 2015 ◽  
pp. 1-36 ◽  
Author(s):  
Wei Li ◽  
Lei Wang ◽  
Quanzhu Yao ◽  
Qiaoyong Jiang ◽  
Lei Yu ◽  
...  

We propose a new optimization algorithm inspired by the formation and change of the cloud in nature, referred to as Cloud Particles Differential Evolution (CPDE) algorithm. The cloud is assumed to have three states in the proposed algorithm. Gaseous state represents the global exploration. Liquid state represents the intermediate process from the global exploration to the local exploitation. Solid state represents the local exploitation. The best solution found so far acts as a nucleus. In gaseous state, the nucleus leads the population to explore by condensation operation. In liquid state, cloud particles carry out macrolocal exploitation by liquefaction operation. A new mutation strategy called cloud differential mutation is introduced in order to solve a problem that the misleading effect of a nucleus may cause the premature convergence. In solid state, cloud particles carry out microlocal exploitation by solidification operation. The effectiveness of the algorithm is validated upon different benchmark problems. The results have been compared with eight well-known optimization algorithms. The statistical analysis on performance evaluation of the different algorithms on 10 benchmark functions and CEC2013 problems indicates that CPDE attains good performance.


Sign in / Sign up

Export Citation Format

Share Document