Preference Prediction for the Stable Inclusion Complexes between Cyclodextrins and Monocyclic Insoluble Chemicals Based on Monte Carlo Docking Simulations

2005 ◽  
Vol 54 (3-4) ◽  
pp. 165-170 ◽  
Author(s):  
Hyunmyung Kim ◽  
Karpjoo Jeong ◽  
Hyungwoo Park ◽  
Seunho Jung
2002 ◽  
Vol 337 (6) ◽  
pp. 549-555 ◽  
Author(s):  
Hyunmyung Kim ◽  
Jungwon Choi ◽  
Hyun-Won Kim ◽  
Seunho Jung

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253760
Author(s):  
Gwangho Lee ◽  
Gun Hyuk Jang ◽  
Ho Young Kang ◽  
Giltae Song

Oligonucleotide-based aptamers, which have a three-dimensional structure with a single-stranded fragment, feature various characteristics with respect to size, toxicity, and permeability. Accordingly, aptamers are advantageous in terms of diagnosis and treatment and are materials that can be produced through relatively simple experiments. Systematic evolution of ligands by exponential enrichment (SELEX) is one of the most widely used experimental methods for generating aptamers; however, it is highly expensive and time-consuming. To reduce the related costs, recent studies have used in silico approaches, such as aptamer-protein interaction (API) classifiers that use sequence patterns to determine the binding affinity between RNA aptamers and proteins. Some of these methods generate candidate RNA aptamer sequences that bind to a target protein, but they are limited to producing candidates of a specific size. In this study, we present a machine learning approach for selecting candidate sequences of various sizes that have a high binding affinity for a specific sequence of a target protein. We applied the Monte Carlo tree search (MCTS) algorithm for generating the candidate sequences using a score function based on an API classifier. The tree structure that we designed with MCTS enables nucleotide sequence sampling, and the obtained sequences are potential aptamer candidates. We performed a quality assessment using the scores of docking simulations. Our validation datasets revealed that our model showed similar or better docking scores in ZDOCK docking simulations than the known aptamers. We expect that our method, which is size-independent and easy to use, can provide insights into searching for an appropriate aptamer sequence for a target protein during the simulation step of SELEX.


1974 ◽  
Vol 22 ◽  
pp. 307 ◽  
Author(s):  
Zdenek Sekanina

AbstractIt is suggested that the outbursts of Periodic Comet Schwassmann-Wachmann 1 are triggered by impacts of interplanetary boulders on the surface of the comet’s nucleus. The existence of a cloud of such boulders in interplanetary space was predicted by Harwit (1967). We have used the hypothesis to calculate the characteristics of the outbursts – such as their mean rate, optically important dimensions of ejected debris, expansion velocity of the ejecta, maximum diameter of the expanding cloud before it fades out, and the magnitude of the accompanying orbital impulse – and found them reasonably consistent with observations, if the solid constituent of the comet is assumed in the form of a porous matrix of lowstrength meteoric material. A Monte Carlo method was applied to simulate the distributions of impacts, their directions and impact velocities.


1988 ◽  
Vol 102 ◽  
pp. 79-81
Author(s):  
A. Goldberg ◽  
S.D. Bloom

AbstractClosed expressions for the first, second, and (in some cases) the third moment of atomic transition arrays now exist. Recently a method has been developed for getting to very high moments (up to the 12th and beyond) in cases where a “collective” state-vector (i.e. a state-vector containing the entire electric dipole strength) can be created from each eigenstate in the parent configuration. Both of these approaches give exact results. Herein we describe astatistical(or Monte Carlo) approach which requires onlyonerepresentative state-vector |RV> for the entire parent manifold to get estimates of transition moments of high order. The representation is achieved through the random amplitudes associated with each basis vector making up |RV>. This also gives rise to the dispersion characterizing the method, which has been applied to a system (in the M shell) with≈250,000 lines where we have calculated up to the 5th moment. It turns out that the dispersion in the moments decreases with the size of the manifold, making its application to very big systems statistically advantageous. A discussion of the method and these dispersion characteristics will be presented.


Sign in / Sign up

Export Citation Format

Share Document