Subatomic Natural Deduction for a Naturalistic First-Order Language with Non-Primitive Identity

2016 ◽  
Vol 25 (2) ◽  
pp. 215-268 ◽  
Author(s):  
Bartosz Więckowski
1978 ◽  
Vol 43 (3) ◽  
pp. 535-549 ◽  
Author(s):  
Ruggero Ferro

Chang, in [1], proves an interpolation theorem (Theorem I, remark b)) for a first-order language. The proof of Chang's theorem uses essentially nonsimple devices, like special and ω1-saturated models.In remark e) in [1], Chang asks if there is a simpler proof of his Theorem I.In [1], Chang proves also another interpolation theorem (Theorem II), which is not an extension of his Theorem I, but extends Craig's interpolation theorem to Lα+,ω languages with interpolant in Lα+,α where α is a strong limit cardinal of cofinality ω.In remark k) in [1], Chang asks if there is a generalization of both Theorems I and II in [1], or at least a generalization of both Theorem I in [1] and Lopez-Escobar's interpolation theorem in [7].Maehara and Takeuti, in [8], show that there is a completely different proof of Chang's interpolation Theorem I as a consequence of their interpolation theorems. The proofs of these theorems of Maehara and Takeuti are proof theoretical in character, involving the notion of cut-free natural deduction, and it uses devices as simple as those needed for the usual Craig's interpolation theorem. Hence this can be considered as a positive answer to Chang's question in remark e) in [1].


1971 ◽  
Vol 36 (1) ◽  
pp. 129-140 ◽  
Author(s):  
G. Fuhrken ◽  
W. Taylor

A relational structure is called weakly atomic-compact if and only if every set Σ of atomic formulas (taken from the first-order language of the similarity type of augmented by a possibly uncountable set of additional variables as “unknowns”) is satisfiable in whenever every finite subset of Σ is so satisfiable. This notion (as well as some related ones which will be mentioned in §4) was introduced by J. Mycielski as a generalization to model theory of I. Kaplansky's notion of an algebraically compact Abelian group (cf. [5], [7], [1], [8]).


2016 ◽  
Vol 81 (3) ◽  
pp. 951-971
Author(s):  
NADAV MEIR

AbstractWe say a structure ${\cal M}$ in a first-order language ${\cal L}$ is indivisible if for every coloring of its universe in two colors, there is a monochromatic substructure ${\cal M}\prime \subseteq {\cal M}$ such that ${\cal M}\prime \cong {\cal M}$. Additionally, we say that ${\cal M}$ is symmetrically indivisible if ${\cal M}\prime$ can be chosen to be symmetrically embedded in ${\cal M}$ (that is, every automorphism of ${\cal M}\prime$ can be extended to an automorphism of ${\cal M}$). Similarly, we say that ${\cal M}$ is elementarily indivisible if ${\cal M}\prime$ can be chosen to be an elementary substructure. We define new products of structures in a relational language. We use these products to give recipes for construction of elementarily indivisible structures which are not transitive and elementarily indivisible structures which are not symmetrically indivisible, answering two questions presented by A. Hasson, M. Kojman, and A. Onshuus.


2011 ◽  
Vol 64 (2) ◽  
Author(s):  
Stavros Skopeteas

AbstractClassical Latin is a free word order language, i.e., the order of the constituents is determined by information structure rather than by syntactic rules. This article presents a corpus study on the word order of locative constructions and shows that the choice between a Theme-first and a Locative-first order is influenced by the discourse status of the referents. Furthermore, the corpus findings reveal a striking impact of the syntactic construction: complements of motion verbs do not have the same ordering preferences with complements of static verbs and adjuncts. This finding supports the view that the influence of discourse status on word order is indirect, i.e., it is mediated by information structural domains.


2007 ◽  
Vol 5 ◽  
Author(s):  
Tigran M. Galoyan

In this paper we discuss strong normalization for natural deduction in the →∀-fragment of first-order logic. The method of collapsing types is used to transfer the result (concerning strong normalization) from implicational logic to first-order logic. The result is improved by a complement, which states that the length of any reduction sequence of derivation term r in first-order logic is equal to the length of the corresponding reduction sequence of its collapse term rc in implicational logic.


1991 ◽  
Vol 56 (1) ◽  
pp. 129-149 ◽  
Author(s):  
Gunnar Stålmarck

In this paper we prove the strong normalization theorem for full first order classical N.D. (natural deduction)—full in the sense that all logical constants are taken as primitive. We also give a syntactic proof of the normal form theorem and (weak) normalization for the same system.The theorem has been stated several times, and some proofs appear in the literature. The first proof occurs in Statman [1], where full first order classical N.D. (with the elimination rules for ∨ and ∃ restricted to atomic conclusions) is embedded in a system for second order (propositional) intuitionistic N.D., for which a strong normalization theorem is proved using strongly impredicative methods.A proof of the normal form theorem and (weak) normalization theorem occurs in Seldin [1] as an extension of a proof of the same theorem for an N.D.-system for the intermediate logic called MH.The proof of the strong normalization theorem presented in this paper is obtained by proving that a certain kind of validity applies to all derivations in the system considered.The notion “validity” is adopted from Prawitz [2], where it is used to prove the strong normalization theorem for a restricted version of first order classical N.D., and is extended to cover the full system. Notions similar to “validity” have been used earlier by Tait (convertability), Girard (réducibilité) and Martin-Löf (computability).In Prawitz [2] the N.D. system is restricted in the sense that ∨ and ∃ are not treated as primitive logical constants, and hence the deductions can only be seen to be “natural” with respect to the other logical constants. To spell it out, the strong normalization theorem for the restricted version of first order classical N.D. together with the well-known results on the definability of the rules for ∨ and ∃ in the restricted system does not imply the normalization theorem for the full system.


2007 ◽  
Vol 50 (4) ◽  
pp. 519-534
Author(s):  
C. Ward Henson ◽  
Yves Raynaud ◽  
Andrew Rizzo

AbstractIt is shown that Schatten p-classes of operators between Hilbert spaces of different (infinite) dimensions have ultrapowers which are (completely) isometric to non-commutative Lp-spaces. On the other hand, these Schatten classes are not themselves isomorphic to non-commutative Lp spaces. As a consequence, the class of non-commutative Lp-spaces is not axiomatizable in the first-order language developed by Henson and Iovino for normed space structures, neither in the signature of Banach spaces, nor in that of operator spaces. Other examples of the same phenomenon are presented that belong to the class of corners of non-commutative Lp-spaces. For p = 1 this last class, which is the same as the class of preduals of ternary rings of operators, is itself axiomatizable in the signature of operator spaces.


1988 ◽  
Vol 31 (3) ◽  
pp. 287-300 ◽  
Author(s):  
Michel Hébert

AbstractLet be the category of all homomorphisms (i.e. functions preserving satisfaction of atomic formulas) between models of a set of sentences T in a finitary first-order language L. Functors between two such categories are said to be canonical if they commute with the forgetful functors. The following properties are characterized syntactically and also in terms of closure of for some algebraic constructions (involving products, equalizers, factorizations and kernel pairs): There is a canonical isomorphism from to a variety (resp. quasivariety) in a finitary expansion of L which assigns to a model its (unique) expansion. This solves a problem of H. Volger.In the case of a purely algebraic language, the properties are equivalent to:“ is canonically isomorphic to a finitary variety (resp. quasivariety)” and, for the variety case, to “the forgetful functor of is monadic (tripleable)”.


1991 ◽  
Vol 56 (2) ◽  
pp. 608-617 ◽  
Author(s):  
Michał Krynicki ◽  
Hans-Peter Tuschik

We consider the language L(Q), where L is a countable first-order language and Q is an additional generalized quantifier. A weak model for L(Q) is a pair 〈, q〉 where is a first-order structure for L and q is a family of subsets of its universe. In case that q is the set of classes of some equivalence relation the weak model 〈, q〉 is called a partition model. The interpretation of Q in partition models was studied by Szczerba [3], who was inspired by Pawlak's paper [2]. The corresponding set of tautologies in L(Q) is called rough logic. In the following we will give a set of axioms of rough logic and prove its completeness. Rough logic is designed for creating partition models.The partition models are the weak models arising from equivalence relations. For the basic properties of the logic of weak models the reader is referred to Keisler's paper [1]. In a weak model 〈, q〉 the formulas of L(Q) are interpreted as usual with the additional clause for the quantifier Q: 〈, q〉 ⊨ Qx φ(x) iff there is some X ∊ q such that 〈, q〉 ⊨ φ(a) for all a ∊ X.In case X satisfies the right side of the above equivalence we say that X is contained in φ(x) or, equivalently, φ(x) contains X.


Sign in / Sign up

Export Citation Format

Share Document