Characterizations of Axiomatic Categories of Models Canonically Isomorphic to (Quasi-)Varieties

1988 ◽  
Vol 31 (3) ◽  
pp. 287-300 ◽  
Author(s):  
Michel Hébert

AbstractLet be the category of all homomorphisms (i.e. functions preserving satisfaction of atomic formulas) between models of a set of sentences T in a finitary first-order language L. Functors between two such categories are said to be canonical if they commute with the forgetful functors. The following properties are characterized syntactically and also in terms of closure of for some algebraic constructions (involving products, equalizers, factorizations and kernel pairs): There is a canonical isomorphism from to a variety (resp. quasivariety) in a finitary expansion of L which assigns to a model its (unique) expansion. This solves a problem of H. Volger.In the case of a purely algebraic language, the properties are equivalent to:“ is canonically isomorphic to a finitary variety (resp. quasivariety)” and, for the variety case, to “the forgetful functor of is monadic (tripleable)”.

1984 ◽  
Vol 49 (4) ◽  
pp. 1333-1338
Author(s):  
Cornelia Kalfa

In [4] I proved that in any nontrivial algebraic language there are no algorithms which enable us to decide whether a given finite set of equations Σ has each of the following properties except P2 (for which the problem is open):P0(Σ) = the equational theory of Σ is equationally complete.P1(Σ) = the first-order theory of Σ is complete.P2(Σ) = the first-order theory of Σ is model-complete.P3(Σ) = the first-order theory of the infinite models of Σ is complete.P4(Σ) = the first-order theory of the infinite models of Σ is model-complete.P5(Σ) = Σ has the joint embedding property.In this paper I prove that, in any finite trivial algebraic language, such algorithms exist for all the above Pi's. I make use of Ehrenfeucht's result [2]: The first-order theory generated by the logical axioms of any trivial algebraic language is decidable. The results proved here are part of my Ph.D. thesis [3]. I thank Wilfrid Hodges, who supervised it.Throughout the paper is a finite trivial algebraic language, i.e. a first-order language with equality, with one operation symbol f of rank 1 and at most finitely many constant symbols.


1971 ◽  
Vol 36 (1) ◽  
pp. 129-140 ◽  
Author(s):  
G. Fuhrken ◽  
W. Taylor

A relational structure is called weakly atomic-compact if and only if every set Σ of atomic formulas (taken from the first-order language of the similarity type of augmented by a possibly uncountable set of additional variables as “unknowns”) is satisfiable in whenever every finite subset of Σ is so satisfiable. This notion (as well as some related ones which will be mentioned in §4) was introduced by J. Mycielski as a generalization to model theory of I. Kaplansky's notion of an algebraically compact Abelian group (cf. [5], [7], [1], [8]).


2016 ◽  
Vol 81 (3) ◽  
pp. 951-971
Author(s):  
NADAV MEIR

AbstractWe say a structure ${\cal M}$ in a first-order language ${\cal L}$ is indivisible if for every coloring of its universe in two colors, there is a monochromatic substructure ${\cal M}\prime \subseteq {\cal M}$ such that ${\cal M}\prime \cong {\cal M}$. Additionally, we say that ${\cal M}$ is symmetrically indivisible if ${\cal M}\prime$ can be chosen to be symmetrically embedded in ${\cal M}$ (that is, every automorphism of ${\cal M}\prime$ can be extended to an automorphism of ${\cal M}$). Similarly, we say that ${\cal M}$ is elementarily indivisible if ${\cal M}\prime$ can be chosen to be an elementary substructure. We define new products of structures in a relational language. We use these products to give recipes for construction of elementarily indivisible structures which are not transitive and elementarily indivisible structures which are not symmetrically indivisible, answering two questions presented by A. Hasson, M. Kojman, and A. Onshuus.


2011 ◽  
Vol 64 (2) ◽  
Author(s):  
Stavros Skopeteas

AbstractClassical Latin is a free word order language, i.e., the order of the constituents is determined by information structure rather than by syntactic rules. This article presents a corpus study on the word order of locative constructions and shows that the choice between a Theme-first and a Locative-first order is influenced by the discourse status of the referents. Furthermore, the corpus findings reveal a striking impact of the syntactic construction: complements of motion verbs do not have the same ordering preferences with complements of static verbs and adjuncts. This finding supports the view that the influence of discourse status on word order is indirect, i.e., it is mediated by information structural domains.


2007 ◽  
Vol 50 (4) ◽  
pp. 519-534
Author(s):  
C. Ward Henson ◽  
Yves Raynaud ◽  
Andrew Rizzo

AbstractIt is shown that Schatten p-classes of operators between Hilbert spaces of different (infinite) dimensions have ultrapowers which are (completely) isometric to non-commutative Lp-spaces. On the other hand, these Schatten classes are not themselves isomorphic to non-commutative Lp spaces. As a consequence, the class of non-commutative Lp-spaces is not axiomatizable in the first-order language developed by Henson and Iovino for normed space structures, neither in the signature of Banach spaces, nor in that of operator spaces. Other examples of the same phenomenon are presented that belong to the class of corners of non-commutative Lp-spaces. For p = 1 this last class, which is the same as the class of preduals of ternary rings of operators, is itself axiomatizable in the signature of operator spaces.


1991 ◽  
Vol 56 (2) ◽  
pp. 608-617 ◽  
Author(s):  
Michał Krynicki ◽  
Hans-Peter Tuschik

We consider the language L(Q), where L is a countable first-order language and Q is an additional generalized quantifier. A weak model for L(Q) is a pair 〈, q〉 where is a first-order structure for L and q is a family of subsets of its universe. In case that q is the set of classes of some equivalence relation the weak model 〈, q〉 is called a partition model. The interpretation of Q in partition models was studied by Szczerba [3], who was inspired by Pawlak's paper [2]. The corresponding set of tautologies in L(Q) is called rough logic. In the following we will give a set of axioms of rough logic and prove its completeness. Rough logic is designed for creating partition models.The partition models are the weak models arising from equivalence relations. For the basic properties of the logic of weak models the reader is referred to Keisler's paper [1]. In a weak model 〈, q〉 the formulas of L(Q) are interpreted as usual with the additional clause for the quantifier Q: 〈, q〉 ⊨ Qx φ(x) iff there is some X ∊ q such that 〈, q〉 ⊨ φ(a) for all a ∊ X.In case X satisfies the right side of the above equivalence we say that X is contained in φ(x) or, equivalently, φ(x) contains X.


1980 ◽  
Vol 45 (1) ◽  
pp. 172-176
Author(s):  
W. Richard Stark

Working in ZFC + Martin's Axiom we develop a generalization of the Barwise Compactness Theorem which holds in languages of cardinality less than . Next, using this compactness theorem, an omitting types theorem for fewer than types is proved. Finally, in ZFC, we prove that this compactness result implies Martin's Axiom (the Equivalence Theorem). Our compactness theorem applies to a new class of theories—ccΣ-theories—which generalize the countable Σ-theories of Barwise's theorem. The Omitting Types Theorem and the Equivalence Theorem serve as examples illustrating the use of ccΣ-theories.Assume = (A, ε) or = (A, ε R1,…,Rm) where is admissible. L() is the first-order language with constants for elements of A and relation symbols for relations in . LA is A ⋂ L∞ω where the L of L∞ω is any language in A. A theory T in LA is consistent if there is no derivation in A of a contradiction from T. is LA with new constants ca for each a and A. The basic terms of consist of the constants of and the terms f(ca1,…,cam) built directly from constants using functions f of . The symbol t is used for basic terms. A theory T in LA is Σ if it is defined by a formula of L(). The formula φ⌝ is a logical equivalent of ¬φ defined by: (1) φ⌝ = ¬φ if φ is atomic; (2) (¬φ)⌝ = φ (3) (⋁φ∈Φ φ)⌝ = ⋀φ∈Φ φ⌝; (4) (⋀φ∈Φ φ) ⋁φ∈Φ φ⌝; (5) (∃χφ(x))⌝ ∀χφ⌝(x); ∀χφ(x))⌝ = ∃χφ⌝(x).


1986 ◽  
Vol 51 (2) ◽  
pp. 430-434 ◽  
Author(s):  
Terrence Millar

This paper is concerned with recursive structures and the persistance of an effective notion of categoricity. The terminology and notational conventions are standard. We will devote the rest of this paragraph to a cursory review of some of the assumed conventions. If θ is a formula, then θk denotes θ if k is zero, and ¬θ if k is one. If A is a sequence with domain a subset of ω, then A∣n denotes the sequence obtained by restricting the domain of A to n. For an effective first order language L, let {ci∣i<ω} be distinct new constants, and let {θi∣i<ω} be an effective enumeration of all sentences in the language L ∪ {ci∣j<ω}. An infinite L-structure is recursive iff it has universe ω and the set is recursive, where cn is interpreted by n. In general we say that a set of formulas is recursive if the set of its indices with respect to an enumeration such as above is recursive. The ∃-diagram of a structure is recursive if the structure is recursive and the set and θi is an existential sentence} is also recursive. The definition of “the ∀∃-diagram of is recursive” is similar.


1986 ◽  
Vol 51 (2) ◽  
pp. 374-376 ◽  
Author(s):  
Simon Thomas

If L is a first order language and n is a natural number, then Ln is the set of formulas which only make use of the variables x1,…,xn. While every finite structure is determined up to isomorphism by its theory in L, the same is no longer true in Ln. This simple observation is the source of a number of intriguing questions. For example, Poizat [2] has asked whether a complete theory in Ln which has at least two nonisomorphic finite models must necessarily also have an infinite one. The purpose of this paper is to present some counterexamples to this conjecture.Theorem. For each n ≤ 3 there are complete theories in L2n−2andL2n−1having exactly n + 1 models.In our notation and definitions, we follow Poizat [2]. To test structures for elementary equivalence in Ln, we shall use the modified Ehrenfeucht-Fraïssé games of Immerman [1]. For convenience, we repeat his definition here.Suppose that L is a purely relational language, each of the relations having arity at most n. Let and ℬ be two structures for L. Define the Ln game on and ℬ as follows. There are two players, I and II, and there are n pairs of counters a1, b1, …, an, bn. On each move, player I picks up any of the counters and places it on an element of the appropriate structure.


Sign in / Sign up

Export Citation Format

Share Document