Metastable defect creation in tritiated hydrogenated amorphous silicon and the Staebler–Wronski effect

2007 ◽  
Vol 18 (S1) ◽  
pp. 175-182
Author(s):  
S. Costea ◽  
N. P. Kherani ◽  
S. Zukotynski
2010 ◽  
Vol 1245 ◽  
Author(s):  
Arno H.M. Smets ◽  
Chris R. Wronski ◽  
Miro Zeman ◽  
M. van de Sanden

AbstractIn the recent years more and more theoretical and experimental evidence have been found that the hydrogen bonded to silicon in dense hydrogenated amorphous silicon (a-Si:H) predominantly resides in hydrogenated divacancies. In this contribution we will philosophize about the option that the small fraction of divacancies, missing at least one of its bonded hydrogen, may correspond to some of the native and metastable defect states of a-Si:H. We will discuss that such defect entities are an interesting basis for new and alternative views on the origin of the SWE.


1995 ◽  
Vol 377 ◽  
Author(s):  
Jong-Hwan Yoon ◽  
H. L. Kim

ABSTRACTWe report the results of a study of metastable defect creation by pulsed light soaking in undoped hydrogenated amorphous silicon (a-Si:H). An illumination time dependence of the defect density, a saturated defect density, and light-induced annealing under pulsed laser light have been studied. Measurements show approximately a t1/2 time-dependence of the defect creation, which is independent of light intensity. It is observed that the saturation value of the defect density is about one order of magnitude higher than by cw illumination in device quality films. It has been suggested that these results would be due to the difference in the light-induced defect annealing rate between cw and pulsed lights, in which it is found that the light-induced annealing rate by pulsed light is lower than by cw light.


1986 ◽  
Vol 70 ◽  
Author(s):  
J. D. Cohen ◽  
K. Mahavadi ◽  
K. Zellama ◽  
J. P. Harbison ◽  
A. E. Delahoy

ABSTRACTWe have studied the light induced instability problem in hydrogenated amorphous silicon using junction capacitance techniques. These techniques are used to examine specific changes in the density of gap states, and occupation of gap states, for undoped a-Si:H samples after light saturation and for a series of partial anneal “states” which culminate in the original dark annealed state (state A). We find that the observed changes in the metastable occupied and unoccupied defects contradict the Si-Si bond breaking model and indicate at least two defect creation processes. In several samples we also find clear evidence that the metastable defect distribution near midgap has a slightly different energy distribution than the stable deep state (dangling bond) distribution. At the same time, these results seem to be qualitatively consistent with many aspects of recent ESR and optical absorption studies of metastable defect creation. We discuss these findings in terms of alternative possible microscopic models for metastable effects in a-Si:H.


1991 ◽  
Vol 219 ◽  
Author(s):  
A. Wynveen ◽  
J. Fan ◽  
J. Kakalios ◽  
J. Shinar

ABSTRACTStudies of r.f. sputter deposited hydrogenated amorphous silicon (a-Si:H) find that the light induced decrease in the dark conductivity and photoconductivity (the Staebler-Wronski effect) is reduced when the r.f. power used during deposition is increased. The slower Staebler-Wronski effect is not due to an increase in the initial defect density in the high r.f. power samples, but may result from either the lower hydrogen content or the smaller optical gap found in these films.


Sign in / Sign up

Export Citation Format

Share Document