sputter deposited
Recently Published Documents


TOTAL DOCUMENTS

2833
(FIVE YEARS 209)

H-INDEX

74
(FIVE YEARS 8)

2022 ◽  
Vol 237 ◽  
pp. 111549
Author(s):  
Alexandra M. Bothwell ◽  
Jennifer A. Drayton ◽  
James R. Sites

Author(s):  
K. Naveen Kumar ◽  
Habibuddin Shaik ◽  
Jyothi Gupta ◽  
Sheik Abdul Sattar ◽  
R.Imran Jafri ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 284-297
Author(s):  
Yuan-Chang Liang ◽  
Tsun-Hsuan Li

Abstract Bi2S3 nanostructures with various morphologies were synthesized through hydrothermal vulcanization at different sulfur precursor (thiourea) concentrations. A 100 nm thick sputter-deposited Bi2O3 thin-film layer on a fluorine-doped tin oxide glass substrate was used as a sacrificial template layer. The etching of the Bi2O3 sacrificial template layer and the regrowth of Bi2S3 crystallites during hydrothermal vulcanization produced the different Bi2S3 nanostructure morphologies. The lowest sulfur precursor concentration (0.01 M) induced the formation of Bi2S3 nanosheets, whereas the Bi2S3 nanoribbons and nanowires were formed with increased sulfur precursor concentrations of 0.03 and 0.1 M, respectively. These results indicate that sputter-deposited Bi2O3 thin-film layers can be effectively used to form low-dimensional Bi2S3 crystals with controllable morphologies. Among the various Bi2S3 samples, the Bi2S3 nanosheets exhibited superior photoactive ability. The higher active surface area, surface defect density, light absorption capacity, and photo-induced charge separation ability of Bi2S3 nanosheets explain their superior photoelectrocatalytic degradation ability of rhodamine B dyes.


Author(s):  
Yasuhisa Omura

Abstract Based on the results of experiments on the resistive switching behaviors of sputter-deposited silicon oxide films, this paper proposes a possible equivalent circuit model to characterize the switching behavior. It is revealed that frequency dispersion of the conductance component and capacitance component in the equivalent circuit model dominate the physical interpretation of the frequency-dependence of the components. The validity of the model and its physical interpretation are examined based on a theoretical model of the dielectric function of the conductive filament region. The polarizability of the conductive filament region suggests that the capacitance component of the conductive filament is insensitive to frequency in the low frequency range, whereas the conductance component of the conductive filament is proportional to frequency in the low frequency range. These theoretical results match experimental findings, and it is revealed that the equivalent circuit models and the frequency dispersion models for the capacitance and conductance component of the silicon oxide film are acceptable. In addition, this paper reveals the importance of the sub-oxide region and the Si precipitate region in determining the resistive switching behaviors of sputter-deposited silicon oxide film.


Author(s):  
Yasuhisa Omura

<p>This paper considers the contribution of hot electrons to the resistive switching of sputter-deposited silicon oxide films based on experiments together with semi-2D Monte Carlo simulations. Using various device stack structures, this paper examines the impact of hot-electron injection on resistive switching, where conduction-band offset and fermi-level difference are utilized. Support is found for the predictions that hot-electron injection reduces the switching voltage and this should reduce the dissipation energy of switching. It is predicted that two-layer metal stacks can significantly reduce the number of oxygen vacancies in the sputter-deposited silicon oxide film after the reset process. It is also demonstrated that, in unipolar switching, the number of E’ or E” centers of the sputter-deposited silicon oxide film is relatively large.</p>


2021 ◽  
Vol 39 (6) ◽  
pp. 063408
Author(s):  
Babak Bakhit ◽  
Daniel Primetzhofer ◽  
Eduardo Pitthan ◽  
Mauricio A. Sortica ◽  
Eleni Ntemou ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7224
Author(s):  
Altangerel Dulmaa ◽  
Diederik Depla

CuO and Al thin films were successively deposited using direct current (reactive) magnetron sputter deposition. A multilayer of five bilayers was deposited on glass, which can be ignited by heating a Ti resistive thin film. The velocity of the reaction front which propagates along the multilayer was optically determined using a high-speed camera. During the deposition of the aluminum layers, air was intentionally leaked into the vacuum chamber to introduce impurities in the film. Depositions at different impurity/metal flux ratios were performed. The front velocity reaches a value of approximately 20 m/s at low flux ratios but drops to approximately 7 m/s at flux ratios between 0.6 and 1. The drop is rather abrupt as the front velocity stays constant above flux ratios larger than 1. This behavior is explained based on the hindrance of the oxygen transport from the oxidizer (CuO) to the fuel (Al).


Sign in / Sign up

Export Citation Format

Share Document