initial defect
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 13)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
pp. 1-27
Author(s):  
Yanlong Li ◽  
Junhao Chen ◽  
Lifeng Wen ◽  
Junzhong Wang ◽  
Kangping Li

It is important to evaluate the internal damage of concrete under load conditions in order to evaluate its stability and usability for building applications. In this study, the uniaxial compression of concrete with initial defect was performed, and the internal damage of concrete was monitored by acoustic emission(AE) technology in real time to study the damage process and mechanism. The mechanical properties of concrete specimens with different initial defect were determined, and the cumulative impact count of AE was recorded. The response characteristics of AE in the process of concrete compression and damage were obtained. According to the analysis of the influence of the initial defect on the Kaiser effect and since the irreversibility of the AE process is related to the degree of damage caused by the material under the pre-load, it was determined that the initial defect will aggravate the damage inside the concrete under the same load level. Based on the statistics and analysis of the Weibull cumulative function, the correlation between AE parameters and damage variables was discussed.


Cartilage ◽  
2021 ◽  
pp. 194760352110638
Author(s):  
Robert J. Pettit ◽  
Joshua S. Everhart ◽  
Alex C. DiBartola ◽  
Ryan E. Blackwell ◽  
David C. Flanigan

Objective The objective of this study was to assess potential risk factors, including time delay until implantation, for knee cartilage defect expansion or new high-grade defect formation between biopsy and Autologous Chondrocyte Implantation (ACI) or Matrix Autologous Chondrocyte Implantation (MACI). Study design Consecutive knee ACI and MACI cases by a single surgeon ( n = 111) were reviewed. The relationship between time between biopsy and staged implantation and (1) progression in primary cartilage defect size and (2) development of a new high-grade (Outerbridge grade ≥3) cartilage defect were determined with adjustment for demographics, body mass index, smoking status, coronal alignment, initial cartilage status, and prior surgery. Results Average size of the primary defect at time of biopsy was 4.50 cm2. Mean time to chondrocyte implantation was 155 days. Defect expansion increased 0.11 cm2 (standard error = 0.03) per month delay to implantation ( P = 0.001). Independent predictors of defect expansion were male sex, smaller initial defect size, and delay to implantation (adjusted mean = 0.15 cm2 expansion per month). A total of 16.2% of patients ( n = 18/111) developed a new high-grade defect. Independent predictors of a new secondary defect were Outerbridge grade 2 changes (vs. 0-1) on the surface opposing the index defect and delayed implantation (per month increase, adjusted odds ratio = 1.21, 95% confidence interval: 1.01-1.44; P = 0.036). Conclusions Patients undergoing 2-stage cell-based cartilage restoration with either ACI or MACI demonstrated long delays between stages of surgery, placing them at risk for expanding defects and development of new high-grade cartilage defects. Patients who were male, had smaller initial defect size, and longer time between surgeries were at greater risk for defect expansion. Level of Evidence III, retrospective comparative study.


2021 ◽  
Author(s):  
Yuqi Zhu ◽  
Wei Yuan ◽  
Qianjian Guo ◽  
Liguo Zhang ◽  
Wenhua Wang ◽  
...  

Abstract The initial defects have greatly affected the gear transmission under harsh working conditions in the fields of wind power and ships. The influence of linear initial defects on the evolution of wear characteristics of helical gears was studied. The laser marking device was used to process the linear initial defect along the tooth width direction, and the gear without initial defect was used for comparison. It can be concluded that the linear initial defect changed the meshing state of the gear tooth, and greatly shortened the normal wear life of the gear, the normal wear life of the gear is shortened by about 45%, and the wear rate in the stable wear stage is increased by about 56%, a great deal of pitting corrosion and plastic flow on the tooth surface occurred in the pitch circle position of the defective gear. In addition, the lubrication condition deteriorated in the later period caused by lubricating oil pollution and the hard particles falling off the gearbox bearings entered the meshing surface and the emerged crack, which further accelerated the wear process of gear.


2021 ◽  
Vol 5 (11) ◽  
pp. 295
Author(s):  
Meisam Kheradpisheh ◽  
Mehdi Hojjati

This paper aims to study the wrinkle formation of a prepreg with initial defect during steering in automated fiber placement (AFP). Wrinkle formation has a detrimental effect on the mechanical properties of the final product, limiting the AFP applications. A theoretical model for wrinkle formation has been developed in which a Pasternak foundation and a Koiter imperfection model are adapted to model viscoelastic characteristics of the prepreg tack and initial defect of the prepreg, respectively. The initial defect is defined as a slight deviation of the tow’s mid-plane from a horizontal shape. The initial defect is generated in the tow by moving the tow through the guidance system, pressure of the roller, and resin tackiness. Galerkin method, along with the finite difference method (FDM), are employed to solve the wrinkle problem equation. The proposed method is able to satisfy the different boundary conditions for the wrinkle problem completely. The numerical results show that increasing the initial defect leads to a decrease in critical load and an increase in critical steering radius. To validate the theoretical model, experimental results are presented and compared with model-predicted results. It is shown that the model is well able to capture the trends and values of wrinkle formation wavelengths obtained from the experiment.


2021 ◽  
Vol 33 (7) ◽  
pp. 185-191
Author(s):  
Kayleen Seaton ◽  
Dustin Mullens ◽  
Jason Barr ◽  
Elizabeth Hull ◽  
Richard Averitte

Introduction. When closure is not feasible, Mohs micrographic surgical wounds typically are left to heal by secondary intention and require weeks to close. Amniotic tissue–derived allograft (ATDA) has proven successful in promoting wound closure in diabetic and refractory wounds, and it may be beneficial for patients who have undergone Mohs micrographic surgery. Objective. The authors conducted a preliminary study to assess the efficacy of ATDA in speeding wound closure time and improving cosmetic outcomes in the specified patient population. Materials and Methods. Patients received an injection of amniotic fluid, an overlay of amniotic membrane, or standard of care. Photographs of wounds taken at the time of treatment and at each subsequent visit were analyzed. Results. The cosmetic outcome and time to wound closure appeared to be improved in patients treated with ATDA when compared with expected outcomes. Owing to small sample size, differences in initial defect size, and variety of body locations, the wound closure rate between treatment groups was not found to be significantly different with most comparisons. Statistical significance was seen, however, when normalized closure rates between membrane and control intervention were compared after outlier analysis (P = .0288). Conclusions. Data indicate that ATDA treatment may be beneficial and suggest that further investigation of the efficacy of ATDA to promote wound healing and improve cosmetic outcomes of post-Mohs surgical wounds is warranted. Future studies should be designed to match initial defect size and location between control and treatment groups.


2021 ◽  
Vol 272 ◽  
pp. 02010
Author(s):  
Bifei Wang ◽  
Yuewei Li ◽  
Wenqiang Qi ◽  
Qihang Wang

A three-dimensional FEM(finite element model)is established, including penstocks with initial defect (ovality), backfill concrete, drainage cushion and surrounding rock. The nonlinear static calculation of the model is carried out. The stability of penstocks with backfill concrete, drainage cushion and surrounding rock under external pressure is studied. The sensibility of the embedded penstocks to initial defect, initial gap and elastic modulus of drainage cushion is analyzed. The results of finite element method, Jacobsen method and strength formula in SL281 are compared and analyzed. The results indicate that the FEM of penstocks, backfill concrete and surrounding rock with initial defects is easy to converge by nonlinear calculation; the ovality and gap have little influence on the critical external pressure of the embedded penstocks with stiffener ring, while the drainage cushion has a certain influence on the critical external pressure; the critical external pressure calculated by SL281 is low and safe; compared with Jacobsen method, the critical external pressure of the finite element method is increased by about 14%; for the embedded penstocks with drainage cushion, the finite element method can be used to calculate the influence of the drainage cushion on the critical external pressure, and the appropriate reduction factor can be obtained, and then the Jacobsen result can be modified by the reduction factor.


Sign in / Sign up

Export Citation Format

Share Document