Efficacy of photoluminescence and photocatalytic properties of Mn doped ZrO2 nanoparticles by facile precipitation method

2018 ◽  
Vol 29 (21) ◽  
pp. 18258-18270 ◽  
Author(s):  
S. Akilandeswari ◽  
G. Rajesh ◽  
D. Govindarajan ◽  
K. Thirumalai ◽  
M. Swaminathan

Un-doped and different mol percentage of manganese doped zirconia nanoparticles were successfully synthesized via precipitation method. The size and magnetic properties of zirconia nanoparticles were systematically analyzed for different mol % manganese in ZrO2 . Obtained results revealed that the manganese (Mn) concentrations played virtual role on various properties of the synthesized ZrO2 nanoparticles.


2021 ◽  
Vol 21 (11) ◽  
pp. 5707-5713
Author(s):  
M. Ramachandran ◽  
R. Subadevi ◽  
P. Rajkumar ◽  
R. Muthupradeepa ◽  
R. Yuvakkumar ◽  
...  

In the present work, pure nanocrystalline monoclinic Zirconia (ZrO2) has been successfully synthesized and optimized by the modified co-precipitation method. The concentration of raw material has been optimized with the fixed amount of precipitation agent (Potassium hydroxide KOH). The thermal history of the precursor has been examined through TG/DTA analysis. All the samples are subjected to study the structure, fingerprints of the molecular vibrations, and morphology analyses. The representative sample has been analyzed through Transmission Electron Microscope (TEM) and X-ray Photo Electron Spectroscopy (XPS) analyses. The as-prepared sample exhibits the better crystallinity and surface morphology with lesser particle size (190 nm) when the raw material concentration is 0.2 M. The as-prepared ZrO2 filler (0, 3, 6, 9, and 12 wt.%) is spread through the enhanced polymer electrolyte P(S-MMA) (27 Wt.%)-LiClO4 (8 wt.%)-EC + PC (1;1 of 65 wt.%) complex system via solution casting method. The as-synthesized electrolyte films are examined via complex impedance analysis. P(S-MMA) (27 wt.%)-LiCIO4 (8 wt.%)-EC + PC (1 ;1 of 65 wt.%)-6 wt.% of ZrO2 shows the high ionic conductivity 2.35 × 10–3 Scm–1. Temperature-dependent ionic conductivity studies obey the non-linear behavior. The enhanced ZrO2 has been expected to enhance the other electrochemical properties of the lithium secondary battery.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Kexin Fang ◽  
Lei Shi ◽  
Lishuang Cui ◽  
Chunwei Shi ◽  
Weiwei Si

A series of CoFe2O4/Bi12O17Cl2 (CFO/Bi12O17Cl2) nanocomposites have been prepared by chemical precipitation method. The result of X-ray diffraction showed that CFO/Bi12O17Cl2 composites had high crystallinity. It was found that CoFe2O4...


2019 ◽  
Vol 9 (3) ◽  
pp. 598
Author(s):  
Danna Trejo-Arroyo ◽  
Karen Acosta ◽  
Julio Cruz ◽  
Ana Valenzuela-Muñiz ◽  
Ricardo Vega-Azamar ◽  
...  

In this research, the effect of the addition of zirconium oxide-synthesized nanoparticles on the microstructural development and the physical–mechanical properties of cement mortars with limestone aggregates was studied. Zirconia nanoparticles were synthesized using the co-precipitation method. According to XRD analysis, a mixture of tetragonal (t) and monoclinic (m) zirconia phases was obtained, with average crystallite sizes around 15.18 and 17.79 nm, respectively. Based on the ASTM standards, a mixture design was obtained for a coating mortar with a final sand/cement ratio of 1:2.78 and a water/cement ratio of 0.58. Control mortars and mortars with ZrO2 additions were analyzed for two stages of curing of the mortar—7 and 28 days. According to SEM analysis, mortars with ZrO2 revealed a microstructure with a high compaction degree and an increase in compressive strength of 9% on the control mortars. Due to the aggregates’ characteristics, adherence with the cement paste in the interface zone was increased. It is suggested that the reinforcing effect of ZrO2 on the mortars was caused by the effect of nucleation sites in the main phase C–S–H and the inhibition of the growth of large CH crystals, and the filler effect generated by the nanometric size of the particles. This produced a greater compaction volume, suggesting that faults are probably originated in the aggregates.


2006 ◽  
Vol 17 (5) ◽  
pp. 1278-1285 ◽  
Author(s):  
O D Jayakumar ◽  
H G Salunke ◽  
R M Kadam ◽  
Manoj Mohapatra ◽  
G Yaswant ◽  
...  

2020 ◽  
Vol 109 ◽  
pp. 110324
Author(s):  
Zihao Pan ◽  
Shumei Wang ◽  
Ruiqiang Yan ◽  
Chunlin Song ◽  
Yanxian Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document