High dielectric properties and thermal conductivity of the PVDF-based composites with a low filler content reinforced by BaTiO3@super-short MWCNT core–shell particles

Author(s):  
Yan-bin You ◽  
Hai-yan Wang ◽  
Lan Li ◽  
Lin-rui Bai ◽  
Zhi-Min Dang
2018 ◽  
Vol 76 (8) ◽  
pp. 3957-3970 ◽  
Author(s):  
Yang Wang ◽  
Lingjie Zhu ◽  
Jun Zhou ◽  
Beibei Jia ◽  
Yingye Jiang ◽  
...  

2018 ◽  
Vol 140 ◽  
pp. 83-90 ◽  
Author(s):  
Zhengdong Wang ◽  
Yonghong Cheng ◽  
Mengmeng Yang ◽  
Jialiang Huang ◽  
Daxian Cao ◽  
...  

2021 ◽  
pp. 095400832110149
Author(s):  
Weixi Zhang ◽  
Yuan Kai ◽  
Jian Lin ◽  
Yumin Huang ◽  
Xiaobo Liu

Polyarylene ether nitrile (PEN) based composites combined MXene, Polydopamine (PDA) and barium titanate (BaTiO3, BT) with “core-shell”-like structure were developed successfully in this work, and then incorporating into the PEN matrix to form the PEN/MXene&PDA@BT nanocomposite films through the solution casting method. The novel MXene&PDA@BT nanoparticles were characterized by the Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Then the structure and properties of the obtained PEN/MXene&PDA@BT nanocomposites are studied in detail. The results show that the modification of PDA improved the dispersibility of MXene nanosheets and BT nanoparticles in the PEN matrix, resulting in the enhancement of mechanical and dielectric properties. The research results reveal that when the content of MXene&PDA@BT is 1%, the tensile strength and modulus reached 114.15 MPa and 3015.74 MPa, respectively. Most important, the PEN based nanocomposites exhibit the outstanding frequency in dependent dielectric properties, including high dielectric constant (5.08 at 1 kHz) and low dielectric loss (0.0178 at 1 kHz). These results indicate that the PEN/MXene&PDA@BT composite films are greatly significant for using as the constructing high performance dielectric materials.


Sign in / Sign up

Export Citation Format

Share Document