high dielectric
Recently Published Documents


TOTAL DOCUMENTS

2262
(FIVE YEARS 436)

H-INDEX

97
(FIVE YEARS 17)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 532
Author(s):  
Todor Dudev ◽  
Diana Cheshmedzhieva ◽  
Peter Dorkov ◽  
Ivayla Pantcheva

The affinity of the polyether ionophore salinomycin to bind IA/IB metal ions was accessed using the Gibbs free energy of the competition reaction between SalNa (taken as a reference) and its rival ions: [M+-solution] + [SalNa] → [SalM] + [Na+-solution] (M = Li, K, Rb, Cs, Cu, Ag, Au). The DFT/PCM computations revealed that the ionic radius, charge density and accepting ability of the competing metal cations, as well as the dielectric properties of the solvent, have an influence upon the selectivity of salinomycin. The optimized structures of the monovalent metal complexes demonstrate the flexibility of the ionophore, allowing the coordination of one or two water ligands in SalM-W1 and SalM-W2, respectively. The metal cations are responsible for the inner coordination sphere geometry, with coordination numbers spread between 2 (Au+), 4 (Li+ and Cu+), 5/6 (Na+, K+, Ag+), 6/7 (Rb+) and 7/8 (Cs+). The metals’ affinity to salinomycin in low-polarity media follows the order of Li+ > Cu+ > Na+ > K+ > Au+ > Ag+ > Rb+ > Cs+, whereas some derangement takes place in high-dielectric environment: Li+ ≥ Na+ > K+ > Cu+ > Au+ > Ag+ > Rb+ > Cs+.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Huma Tariq ◽  
Fahad Azad

In this work, we have synthesized donor-acceptor (Al-Cu) codoped ZnO nanoparticles with a doping concentration of 0%, 0.25%, 0.5%, and 0.75% by coprecipitation method. The synthesized samples were then annealed at 350°C and 600°C. All the samples showed wurtzite structure of ZnO with no secondary phase. The increase in doping concentration led to deterioration of crystalline quality, while improved crystallinity was observed at higher annealing temperature. The morphological study of these samples showed good grain-to-grain contact with less isolated pores. These samples were further characterized by impedance spectroscopy for analyzing dielectric properties. The values of the real part of dielectric constant and tangent loss showed decreasing trend with frequency. The appearance of semicircular arcs in the impedance complex plane plots indicates contribution of grains and grain boundaries and presence of different relaxation processes. 0.5% Al and Cu codoped ZnO showed the best dielectric response with a high value of dielectric constant and low tangent loss.


Research ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Dongqing Lin ◽  
Wenhua Zhang ◽  
Hang Yin ◽  
Haixia Hu ◽  
Yang Li ◽  
...  

High dielectric constants in organic semiconductors have been identified as a central challenge for the improvement in not only piezoelectric, pyroelectric, and ferroelectric effects but also photoelectric conversion efficiency in OPVs, carrier mobility in OFETs, and charge density in charge-trapping memories. Herein, we report an ultralong persistence length (lp≈41 nm) effect of spiro-fused organic nanopolymers on dielectric properties, together with excitonic and charge carrier behaviors. The state-of-the-art nanopolymers, namely, nanopolyspirogrids (NPSGs), are synthesized via the simple cross-scale Friedel-Crafts polygridization of A2B2-type nanomonomers. The high dielectric constant (k=8.43) of NPSG is firstly achieved by locking spiro-polygridization effect that results in the enhancement of dipole polarization. When doping into a polystyrene-based dielectric layer, such a high-k feature of NPSG increases the field-effect carrier mobility from 0.20 to 0.90 cm2 V-1 s-1 in pentacene OFET devices. Meanwhile, amorphous NPSG film exhibits an ultralow energy disorder (<50 meV) for an excellent zero-field hole mobility of 3.94×10−3 cm2 V−1 s−1, surpassing most of the amorphous π-conjugated polymers. Organic nanopolymers with high dielectric constants open a new way to break through the bottleneck of efficiency and multifunctionality in the blueprint of the fourth-generation semiconductors.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yang Feng ◽  
Zhaonan Li ◽  
Lin Qi ◽  
Wanting Shen ◽  
Gaosheng Li

AbstractA tiny and compact implantable antenna for wireless cardiac pacemaker systems is designed. The antenna works in the Industrial Scientific Medical (ISM) frequency band (2.4–2.48 GHz). The size of the antenna is greatly reduced with the adoption of a high dielectric constant medium and a folded meander structure. The volume of the antenna is 4.5 mm3, and the size is only 3 mm × 3 mm × 0.5 mm. Based on the literature research, it was found that the design was the smallest among the same type of implanted antenna. The antenna is optimized and loaded with a defective slotted structure, which improves the efficiency of the overall performance of the antenna and thus the gain thereof. The antenna maintains good impedance matching in the ISM frequency band, covering the entire ISM frequency band. The actual bandwidth of the antenna is 22%, with the peak gain of − 24.9 dBi. The antenna is processed and manufactured in such a manner that the simulation keeps consistent with the actual measurement. In addition, the specific absorption rate of the antenna is also evaluated and analyzed. The result shows that this kind of antenna is the best choice to realize the wireless biological telemetry communication in the extremely compact space of the wireless cardiac pacemaker system.


2022 ◽  
Author(s):  
Francis Owusu ◽  
Martin Tress ◽  
Frank A. Nüesch ◽  
Sandro Lehner ◽  
Dorina M. Opris

Polar polynorbornenes prepared by ring-opening metathesis polymerization show thermally switchable dielectric permittivity. The polymers exhibit a large dielectric relaxation strength and high glass transition temperature.


2022 ◽  
pp. 725-758
Author(s):  
Desagani Dayananda ◽  
P. Lokanatha Reddy ◽  
Kalim Deshmukh ◽  
Y. Ravi Kumar ◽  
Mohan Kumar Kesarla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document