Quantifying mixing from standard observations: revisiting finescale parameterization in the Arctic Ocean

Author(s):  
Till Baumann ◽  
Ilker Fer ◽  
Kirstin Schulz ◽  
Volker Mohrholz ◽  
Janin Schaffer ◽  
...  

<p>Ocean mixing governs the vertical exchange of matter, heat and salt in the water column. In the Arctic Ocean, the vertical transport of heat due to turbulent mixing is ultimately coupled to the sea-ice cover, with immediate and far-reaching impacts on the climate and ecosystem. A detailed understanding and quantification of turbulent mixing is crucial to assess and predict the state of the changing Arctic Ocean. However, direct observations of turbulent mixing are complicated, expensive and sparse.</p><p>Finescale parameterization of turbulent energy dissipation allows for the quantification of mixing based on standard hydrographic observations such as velocity and density profiles. This method is based on the assumption that energy dissipation is achieved exclusively by cascading energy from large, observable scales to small scales by wave-to-wave interactions in the internal wave field, which in turn can be related to vertical diffusivity and hence turbulent fluxes. While the finescale parameterization is proved to be reliable at mid-latitudes, the Arctic Ocean internal wave field is distinct from the canonical mid-latitude spectrum and the applicability of the parameterization is not certain. Furthermore, in the historically quiescent Arctic, the application of finescale parameterization suffers from a generally low signal to noise ratio and processes violating the assumptions in the parameterization, such as double diffusion.  During the year-long MOSAiC expedition, both standard observations as well as specialized microstructure measurements were carried out continuously. We analyse dissipation rate and stratification measurements (from an MSS90L profiler) and 8-m vertical resolution current measurements (from a 75 kHz RDI acoustic Doppler current profiler) in the depth range from 70 -198 m, in the absence of thermohaline staircases or double-diffusive intrusions. Although the range of dissipation measurements is limited and spans 1e<sup>-11</sup> W kg<sup>-1</sup> to 8.8e<sup>-7</sup> W kg<sup>-1</sup>, direct comparisons between in-situ observations of dissipation rate and finescale parameterization provide a detailed insight into the capabilities and limitations of this method in various meteorological, oceanographic and geographic conditions. The aim is to provide guidance in how far standard oceanographic observations may be utilized to quantify mixing in past, current and future states of the Arctic Ocean.</p>

2016 ◽  
Vol 46 (2) ◽  
pp. 395-415 ◽  
Author(s):  
Hayley V. Dosser ◽  
Luc Rainville

ABSTRACTThe dynamics of the wind-generated near-inertial internal wave field in the Canada Basin of the Arctic Ocean are investigated using the drifting Ice-Tethered Profiler dataset for the years 2005 to 2014, during a decade when sea ice extent and thickness decreased dramatically. This time series, with nearly 10 years of measurements and broad spatial coverage, is used to quantify a seasonal cycle and interannual trend for internal waves in the Arctic, using estimates of the amplitude of near-inertial waves derived from isopycnal displacements. The internal wave field is found to be most energetic in summer when sea ice is at a minimum, with a second maximum in early winter during the period of maximum wind speed. Amplitude distributions for the near-inertial waves are quantifiably different during summer and winter, due primarily to seasonal changes in sea ice properties that affect how the ice responds to the wind, which can be expressed through the “wind factor”—the ratio of sea ice drift speed to wind speed. A small positive interannual trend in near-inertial wave energy is linked to pronounced sea ice decline during the last decade. Overall variability in the internal wave field increases significantly over the second half of the record, with an increased probability of larger-than-average waves in both summer and winter. This change is linked to an overall increase in variability in the wind factor and sea ice drift speeds, and reflects a shift in year-round sea ice characteristics in the Arctic, with potential implications for dissipation and mixing associated with internal waves.


2021 ◽  
Vol 48 (8) ◽  
Author(s):  
H. V. Dosser ◽  
M. Chanona ◽  
S. Waterman ◽  
N. C. Shibley ◽  
M.‐L. Timmermans

2007 ◽  
Vol 37 (4) ◽  
pp. 1066-1076 ◽  
Author(s):  
M-L. Timmermans ◽  
H. Melling ◽  
L. Rainville

Abstract A 50-day time series of high-resolution temperature in the deepest layers of the Canada Basin in the Arctic Ocean indicates that the deep Canada Basin is a dynamically active environment, not the quiet, stable basin often assumed. Vertical motions at the near-inertial (tidal) frequency have amplitudes of 10– 20 m. These vertical displacements are surprisingly large considering the downward near-inertial internal wave energy flux typically observed in the Canada Basin. In addition to motion in the internal-wave frequency band, the measurements indicate distinctive subinertial temperature fluctuations, possibly due to intrusions of new water masses.


ARCTIC ◽  
2011 ◽  
Vol 64 (1) ◽  
pp. 45 ◽  
Author(s):  
Marta E. Torres ◽  
Daniela Zima ◽  
Kelly K. Falkner ◽  
Robie W. Macdonald ◽  
Mary O'Brien ◽  
...  

<span style="font-family: 'Times New Roman';">Nares Strait is one of three main passages of the Canadian Archipelago that channel relatively fresh seawater from the Arctic Ocean through Baffin Bay to the Labrador Sea. Oxygen isotopic profiles along the growth axis of bivalve shells, collected live over the 5 – 30 m depth range from the Greenland and Ellesmere Island sides of the strait, were used to reconstruct changes in the hydrography of the region over the past century. The variability in oxygen isotope ratios is mainly attributed to variations in salinity and suggests that the northern end of Nares Strait has been experiencing an increase in freshwater runoff since the mid 1980s. The recent changes are most pronounced at the northern end of the strait and diminish toward the south, a pattern consistent with proximity to the apparently freshening Arctic Ocean source in the north and mixing with Baffin Bay waters as the water progresses southward. This increasing freshwater signal may reflect changes in circulation and ice formation that favor an increased flow of relatively fresh waters from the Arctic Ocean into Nares Strait. </span>


2021 ◽  
Author(s):  
Gabin Urbancic ◽  
Kevin Lamb ◽  
Ilker Fer ◽  
Laurie Padman

&lt;p&gt;North of the critical latitude (78.4), internal waves of the M&lt;sub&gt;2&lt;/sub&gt; tidal frequency can no longer freely propagate, and the energy conversion from the barotropic to the internal tides vanishes. Near the continental slopes around the Arctic Ocean, internal wave energy is enhanced and comparable to values at mid-latitudes (Rippeth et al. 2015, Levine et al. 1985). Observations on the northern flank of the Yermak Plateau (YP) has characterized the region as one of enhanced internal wave activity and nonlinear internal waves have been observed (Czipott et al. 1991, Padman and Dillon 1991).&lt;/p&gt;&lt;p&gt;The YP is a bathymetry feature stretching out into the Fram Strait north-west of Svalbard. The YP plays a prominent role in the Arctic&amp;#8217;s heat balance due to its interaction with the West-Spitsbergen current which is a main contributor to the heat transport into the Arctic Ocean. Nonlinear waves generated over the YP are a significant energy source for mixing and can therefore modulate and force exchange processes.&lt;/p&gt;&lt;p&gt;To study the nonlinear internal wave generation mechanisms over the YP, we used a high resolution, nonlinear, non-hydrostatic model. We found that nonlinear internal waves are forced not by the M&lt;sub&gt;2&lt;/sub&gt; but the K&lt;sub&gt;1&lt;/sub&gt; tide which has been observed to have significant variability over the YP (Padman et al. 1992). Barotropic, diurnal shelf waves generated on the eastern side of the YP propagates counter-clockwise, amplifying the cross-slope currents. This amplification is the necessary condition for nonlinear internal wave generation over the YP.&lt;/p&gt;


2021 ◽  
Author(s):  
Shun Yang ◽  
Haibin Song ◽  
Kun Zhang

&lt;p&gt;The eddies are ubiquitous in the ocean and play an important role in the transportation and redistribution of heat, salt, carbon, nutrients and other materials in the global ocean, thus can regulate global climate and affect the distribution of marine organism. Compared with mesoscale eddies, submesoscale vortices (SVs) have smaller spatial and temporal scales, which impose higher requirements on observation and simulation. The oceanic SVs have a strong vertical velocity, which provides an important supply of nutrients in the upper ocean.&lt;/p&gt;&lt;p&gt;Many researchers have studied the SVs in the Arctic Ocean by physical oceanography methods (e.g., &lt;em&gt;in-situ &lt;/em&gt;measurements and satellite observations). Here, we found a perfect bowl-like SV using a new method named seismic oceanography (SO). SO can use multichannel seismic (MCS) reflection data to produce surprisingly detailed images of water column. Compared with the traditional physical oceanography methods, SO has the advantages of high acquisition efficiency, high lateral resolution (~10 m) and full depth imaging of seawater.&lt;/p&gt;&lt;p&gt;We used MCS data to image the water column in the in autumn Northeast Chukchi Sea, and captured a perfect bowl-like structure with a depth range of ~200-620m. The structure is almost bilaterally symmetric and has dip angles of 4.8&amp;#176; and 5.5&amp;#176; on the left and on the right, respectively. And it has a horizontal scale of about 12 km at the top and 4.5 km at the bottom, and both the top and bottom of it are near horizontal. The reflections are almost blank in its interior, but are intense and very narrow (~30 m thick) at the lateral boundaries. This indicated that the interior water is homogeneous and quite different from that around it. Fortunately, there is an XBT station near the seismic line and collected almost simultaneously (only one day apart) with the seismic line. The XBT station shows obvious high temperature anomaly over 2&amp;#176;C at the depth of 210-700 m. Therefore, we concluded the structure is a subsurface warm SV, i.e. anticyclonic warm eddy, and may be a submesoscale coherent vortex (SCV). The anomalies from the surrounding water masses indicate that the SV was created at the edge of the Arctic Ocean and then advected here.&lt;/p&gt;&lt;p&gt;In addition, we used Rossby number (Ro) and Okubo-Weiss (OW) parameter calculated from daily-averaged re-analysis hydrographic data (~3.5 km of grid spacing at 75&amp;#176;N ) from Copernicus Marine Environment Monitoring Service (CMEMS) to analyze the SV. Result shows that the values of the Ro and OW parameter in the area of the SV are both negative. This also suggests that this SV is an anticyclone. This submesoscale anticyclonic vortex may be generated from the friction effect between the warm inflow from the North Pacific and the right wall of Barrow Canyon after passing through the Bering Strait, and then transported to the Northeast of Chukchi Sea by the Beaufort Gyre.&lt;/p&gt;


2013 ◽  
Vol 43 (2) ◽  
pp. 259-282 ◽  
Author(s):  
Stephanie Waterman ◽  
Alberto C. Naveira Garabato ◽  
Kurt L. Polzin

Abstract This study reports on observations of turbulent dissipation and internal wave-scale flow properties in a standing meander of the Antarctic Circumpolar Current (ACC) north of the Kerguelen Plateau. The authors characterize the intensity and spatial distribution of the observed turbulent dissipation and the derived turbulent mixing, and consider underpinning mechanisms in the context of the internal wave field and the processes governing the waves’ generation and evolution. The turbulent dissipation rate and the derived diapycnal diffusivity are highly variable with systematic depth dependence. The dissipation rate is generally enhanced in the upper 1000–1500 m of the water column, and both the dissipation rate and diapycnal diffusivity are enhanced in some places near the seafloor, commonly in regions of rough topography and in the vicinity of strong bottom flows associated with the ACC jets. Turbulent dissipation is high in regions where internal wave energy is high, consistent with the idea that interior dissipation is related to a breaking internal wave field. Elevated turbulence occurs in association with downward-propagating near-inertial waves within 1–2 km of the surface, as well as with upward-propagating, relatively high-frequency waves within 1–2 km of the seafloor. While an interpretation of these near-bottom waves as lee waves generated by ACC jets flowing over small-scale topographic roughness is supported by the qualitative match between the spatial patterns in predicted lee wave radiation and observed near-bottom dissipation, the observed dissipation is found to be only a small percentage of the energy flux predicted by theory. The mismatch suggests an alternative fate to local dissipation for a significant fraction of the radiated energy.


Sign in / Sign up

Export Citation Format

Share Document