Fault-tolerant diameter for three family interconnection networks

2010 ◽  
Vol 23 (4) ◽  
pp. 471-482 ◽  
Author(s):  
Tongliang Shi ◽  
Mei Lu
1996 ◽  
Vol 57 (5) ◽  
pp. 265-271
Author(s):  
Suresh Viswanathan ◽  
Éva Czabarka ◽  
Abhijit Sengupta

1998 ◽  
Vol 09 (01) ◽  
pp. 25-37 ◽  
Author(s):  
THOMAS J. CORTINA ◽  
ZHIWEI XU

We present a family of interconnection networks named the Cube-Of-Rings (COR) networks along with their basic graph-theoretic properties. Aspects of group graph theory are used to show the COR networks are symmetric and optimally fault tolerant. We present a closed-form expression of the diameter and optimal one-to-one routing algorithm for any member of the COR family. We also discuss the suitability of the COR networks as the interconnection network of scalable parallel computers.


2005 ◽  
Vol 06 (04) ◽  
pp. 361-382 ◽  
Author(s):  
K. V. Arya ◽  
R. K. Ghosh

This paper proposes a technique to modify a Multistage Interconnection Network (MIN) to augment it with fault tolerant capabilities. The augmented MIN is referred to as Enhanced MIN (E-MIN). The technique employed for construction of E-MIN is compared with the two known physical fault tolerance techniques, namely, extra staging and chaining. EMINs are found to be more generic than extra staged networks and less expensive than chained networks. The EMIN realizes all the permutations realizable by the original MIN. The routing strategies under faulty and fault free conditions are shown to be very simple in the case of E-MINs.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Mostafa Abd-El-Barr ◽  
Turki F. Al-Somani

Hierarchical interconnection networks (HINs) provide a framework for designing networks with reduced link cost by taking advantage of the locality of communication that exists in parallel applications. HINs employ multiple levels. Lower-level networks provide local communication while higher-level networks facilitate remote communication. HINs provide fault tolerance in the presence of some faulty nodes and/or links. Existing HINs can be broadly classified into two classes. those that use nodes and/or links replication and those that use standby interface nodes. The first class includes Hierarchical Cubic Networks, Hierarchical Completely Connected Networks, and Triple-based Hierarchical Interconnection Networks. The second HINs class includes Modular Fault-Tolerant Hypercube Networks and Hierarchical Fault-Tolerant Interconnection Network. This paper presents a review and comparison of the topological properties of both classes of HINs. The topological properties considered are network degree, diameter, cost and packing density. The outcome of this study show among all HINs two networks that is, the Root-Folded Heawood (RFH) and the Flooded Heawood (FloH), belonging to the first HIN class provide the best network cost, defined as the product of network diameter and degree. The study also shows that HFCube(n,n)provide the best packing density, that is, the smallest chip area required for VLSI implementation.


2000 ◽  
Vol 01 (04) ◽  
pp. 315-329 ◽  
Author(s):  
PETER KOK KEONG LOH ◽  
WEN JING HSU

Hierarchical interconnection networks with n-dimensional hypercube clusters can strike a balance between wide application suitability, size scalability as well as reliability. Cluster communications support for such networks must therefore be reliable and efficient without incurring large overheads. This paper proposes a reliable and cost-effective intra-cluster communications strategy for such a class of interconnection networks. The routing algorithm can tolerate up to (n - 1) component faults in the cluster and generates routes that are cycle-free and livelock-free. The message is guaranteed to be optimally (respectively, sub-optimally) delivered within a maximum of n (respectively, 2n - 1) hops. The message overhead incurred is one of the lowest reported for the specified fault tolerance level – with only a single n-bit routing vector accompanying the message to be communicated. Finally, routing hardware support may be simply achieved with standard components, facilitating integration with the host network.


Sign in / Sign up

Export Citation Format

Share Document