A Fixed Point Approach to Simulation of Functional Differential Equations with a Delayed Argument

Author(s):  
Vincenzo M. Isaia
2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Zhang Suping ◽  
Jiang Wei

By employing the Krasnoselskii fixed point theorem, we establish some criteria for the existence of positive periodic solutions of a class ofn-dimension periodic functional differential equations with impulses, which improve the results of the literature.


2011 ◽  
Vol 403-408 ◽  
pp. 1319-1321
Author(s):  
Lei Wang

In this paper, a type of nonlinear functional differential equations with impulse effects are studied by using the Leggett-Williams fixed point theorem.


2022 ◽  
Vol 27 (1) ◽  
pp. 163-178
Author(s):  
Mudasir Younis ◽  
Aleksandra Stretenović ◽  
Stojan Radenović

In this manuscript, we generalize, improve, and enrich recent results established by Budhia et al. [L. Budhia, H. Aydi, A.H. Ansari, D. Gopal, Some new fixed point results in rectangular metric spaces with application to fractional-order functional differential equations, Nonlinear Anal. Model. Control, 25(4):580–597, 2020]. This paper aims to provide much simpler and shorter proofs of some results in rectangular metric spaces. According to one of our recent lemmas, we show that the given contractive condition yields Cauchyness of the corresponding Picard sequence. The obtained results improve well-known comparable results in the literature. Using our new approach, we prove that a Picard sequence is Cauchy in the framework of rectangular metric spaces. Our obtained results complement and enrich several methods in the existing state-ofart. Endorsing the materiality of the presented results, we also propound an application to dynamic programming associated with the multistage process.


1991 ◽  
Vol 43 (2) ◽  
pp. 331-339 ◽  
Author(s):  
Vasil G. Angelov

The purpose of the paper is to introduce a class of “j-nonexpansive” mappings and to prove fixed point theorems for such mappings. They naturally arise in the existence theory of functional differential equations. These mappings act in spaces without specific geometric properties as, for instance, uniform convexity. Critical examples are given.


In this paper, sufficient conditions are given for the existence of partial functional differential equations with nonlocal conditions in an abstract space with the help of the fixed point theorems.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Abdellatif Ben Makhlouf ◽  
Lassaad Mchiri ◽  
Mohamed Rhaima

The Ulam-Hyers-Rassias stability for stochastic systems has been studied by many researchers using the Gronwall-type inequalities, but there is no research paper on the Ulam-Hyers-Rassias stability of stochastic functional differential equations via fixed point methods. The main goal of this paper is to investigate the Ulam-Hyers Stability (HUS) and Ulam-Hyers-Rassias Stability (HURS) of stochastic functional differential equations (SFDEs). Under the fixed point methods and the stochastic analysis techniques, the stability results for SFDE are investigated. We analyze two illustrative examples to show the validity of the results.


Sign in / Sign up

Export Citation Format

Share Document