Stability in functional differential equations established using fixed point theory

2008 ◽  
Vol 68 (11) ◽  
pp. 3307-3315 ◽  
Author(s):  
Chuhua Jin ◽  
Jiaowan Luo
2019 ◽  
Vol 27 (4) ◽  
pp. 213-223
Author(s):  
El Hassan Lakhel ◽  
Abdelmonaim Tlidi

Abstract Hermite processes are self-similar processes with stationary increments; the Hermite process of order 1 is fractional Brownian motion (fBm) and the Hermite process of order 2 is the Rosenblatt process. In this paper we consider a class of impulsive neutral stochastic functional differential equations with variable delays driven by Rosenblatt process with index {H\in(\frac{1}{2},1)} , which is a special case of a self-similar process with long-range dependence. More precisely, we prove an existence and uniqueness result, and we establish some conditions, ensuring the exponential decay to zero in mean square for the mild solution by means of the Banach fixed point theory. Finally, an illustrative example is given to demonstrate the effectiveness of the obtained result.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Dingheng Pi

We study a class of integrodifferential functional differential equationsx¨+f(t,x,x˙)x˙+∑j=1N∫t-rj(t)taj(t,s)gj(s,x(s))ds=0with variable delay. By using the fixed point theory, we establish necessary and sufficient conditions ensuring that the zero solution of this equation is asymptotically stable.


Author(s):  
Mohammed A. Almalahi ◽  
Satish K. Panchal

AbstractIn this article we present the existence and uniqueness results for fractional integro-differential equations with ψ-Hilfer fractional derivative. The reasoning is mainly based upon different types of classical fixed point theory such as the Mönch fixed point theorem and the Banach fixed point theorem. Furthermore, we discuss Eα -Ulam-Hyers stability of the presented problem. Also, we use the generalized Gronwall inequality with singularity to establish continuous dependence and uniqueness of the δ-approximate solution.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
O. Zentar ◽  
M. Ziane ◽  
S. Khelifa

Abstract The purpose of this work is to investigate the existence of solutions for a system of random differential equations involving the Riemann–Liouville fractional derivative. The existence result is established by means of a random abstract formulation to Sadovskii’s fixed point theorem principle [A. Baliki, J. J. Nieto, A. Ouahab and M. L. Sinacer, Random semilinear system of differential equations with impulses, Fixed Point Theory Appl. 2017 2017, Paper No. 27] combined with a technique based on vector-valued metrics and convergent to zero matrices. An example is also provided to illustrate our result.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 672 ◽  
Author(s):  
Mouffak Benchohra ◽  
Soufyane Bouriah ◽  
Juan J. Nieto

We present in this work the existence results and uniqueness of solutions for a class of boundary value problems of terminal type for fractional differential equations with the Hilfer–Katugampola fractional derivative. The reasoning is mainly based upon different types of classical fixed point theory such as the Banach contraction principle and Krasnoselskii’s fixed point theorem. We illustrate our main findings, with a particular case example included to show the applicability of our outcomes.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Zhang Suping ◽  
Jiang Wei

By employing the Krasnoselskii fixed point theorem, we establish some criteria for the existence of positive periodic solutions of a class ofn-dimension periodic functional differential equations with impulses, which improve the results of the literature.


2000 ◽  
Vol 61 (3) ◽  
pp. 439-449 ◽  
Author(s):  
Donal O'Regan

A variety of fixed point results are presented for weakly sequentially upper semicontinuous maps. In addition an existence result is established for differential equations in Banach spaces relative to the weak topology.


2011 ◽  
Vol 403-408 ◽  
pp. 1319-1321
Author(s):  
Lei Wang

In this paper, a type of nonlinear functional differential equations with impulse effects are studied by using the Leggett-Williams fixed point theorem.


Sign in / Sign up

Export Citation Format

Share Document