Numerical Modeling of the Thermal State of a Metal–Concrete Container with Spent Nuclear Fuel During Its Transportation

2018 ◽  
Vol 91 (4) ◽  
pp. 991-998 ◽  
Author(s):  
Yu. E. Karyakin ◽  
V. M. Kuzin ◽  
A. A. Pletnev ◽  
E. D. Fedorovich
2020 ◽  
pp. 111-119
Author(s):  
V.G. Rudychev ◽  
N.A. Azarenkov ◽  
I.O. Girka ◽  
Y.V. Rudychev

Two options for changing the distribution of spent nuclear fuel due to the possible destruction of the cladding of fuel rods, which causes a change in radiation outside the cask, are considered for VSC-24 casks used for storage of spent nuclear fuel by the dry method. The effect of height reduction due to the destruction of the fuel rods of all 24 SFAs and 10 central SFAs on external radiation is studied analytically and by numerical modeling in the MCNP package. The destruction of 24 SFA is shown to lead to a significant decrease in the dose rate of neutrons and gamma-radiation from 60Co on the weather lid of the cask, and of gamma-radiation from SNF isotopes at the mid-height of the side surface of the cask. The destruction of the ten central SFAs can be determined only from a change in the neutron radiation in the air inlets of the cask.


2020 ◽  
pp. 81-84
Author(s):  
S. Alyokhina ◽  
A. Kostikov ◽  
I. Koriahina

Now only one Dry Storage Facility of Spent Nuclear Fuel (DSFSNF) is operated in Ukraine. It is the facility on Zaporizhska NPP. Many different thermal investigations were done for ventilated containers of DSFSNF. In this study the generalization of scientific approaches to the thermal safety assessment are carried out. The multi-stage approach to the definition of thermal state of containers' group, single container, spent fuel assemblies and fuel rods was developed. Detailed thermal profiles of spent fuel assemblies inside storage container were calculated. With usage of multi-stage approach the thermal simulations of the influence of outer factors onto thermal state of containers was carried out. Results of thermal investigations were generalized and factors, which are influence on thermal state of containers, are detected. The method of spent nuclear fuel thermal state prediction and suggestion for improving the system of thermal monitoring were proposed.


2015 ◽  
Vol 39 (14) ◽  
pp. 1917-1924 ◽  
Author(s):  
Svitlana Alyokhina ◽  
Volodymyr Goloshchapov ◽  
Andrii Kostikov ◽  
Yu Matsevity

2002 ◽  
Author(s):  
Glenn E. McCreery ◽  
Keith G. Condie ◽  
Randy C. Clarksean ◽  
Donald M. McEligot

2020 ◽  
Vol 2020 (1) ◽  
pp. 67-77
Author(s):  
Nikita Vladimirivich Kovalyov ◽  
Boris Yakovlevich Zilberman ◽  
Nikolay Dmitrievich Goletskiy ◽  
Andrey Borisovich Sinyukhin

Sign in / Sign up

Export Citation Format

Share Document