Solvability of first order functional differential operators

2015 ◽  
Vol 53 (9) ◽  
pp. 2065-2077
Author(s):  
Z. I. Ismailov ◽  
B. O. Guler ◽  
P. Ipek
1997 ◽  
Vol 40 (6) ◽  
pp. 525-530 ◽  
Author(s):  
I. V. Shirokov

2021 ◽  
pp. 1-20
Author(s):  
STEPHEN TAYLOR ◽  
XUESHAN YANG

Abstract The functional partial differential equation (FPDE) for cell division, $$ \begin{align*} &\frac{\partial}{\partial t}n(x,t) +\frac{\partial}{\partial x}(g(x,t)n(x,t))\\ &\quad = -(b(x,t)+\mu(x,t))n(x,t)+b(\alpha x,t)\alpha n(\alpha x,t)+b(\beta x,t)\beta n(\beta x,t), \end{align*} $$ is not amenable to analytical solution techniques, despite being closely related to the first-order partial differential equation (PDE) $$ \begin{align*} \frac{\partial}{\partial t}n(x,t) +\frac{\partial}{\partial x}(g(x,t)n(x,t)) = -(b(x,t)+\mu(x,t))n(x,t)+F(x,t), \end{align*} $$ which, with known $F(x,t)$ , can be solved by the method of characteristics. The difficulty is due to the advanced functional terms $n(\alpha x,t)$ and $n(\beta x,t)$ , where $\beta \ge 2 \ge \alpha \ge 1$ , which arise because cells of size x are created when cells of size $\alpha x$ and $\beta x$ divide. The nonnegative function, $n(x,t)$ , denotes the density of cells at time t with respect to cell size x. The functions $g(x,t)$ , $b(x,t)$ and $\mu (x,t)$ are, respectively, the growth rate, splitting rate and death rate of cells of size x. The total number of cells, $\int _{0}^{\infty }n(x,t)\,dx$ , coincides with the $L^1$ norm of n. The goal of this paper is to find estimates in $L^1$ (and, with some restrictions, $L^p$ for $p>1$ ) for a sequence of approximate solutions to the FPDE that are generated by solving the first-order PDE. Our goal is to provide a framework for the analysis and computation of such FPDEs, and we give examples of such computations at the end of the paper.


2014 ◽  
Vol 22 (1) ◽  
pp. 85-103 ◽  
Author(s):  
Jan Chvalina ◽  
Šárka Hošková-Mayerová

AbstractThe contribution aims to create hypergroups of linear first-order partial differential operators with proximities, one of which creates a tolerance semigroup on the power set of the mentioned differential operators. Constructions of investigated hypergroups are based on the so called “Ends-Lemma” applied on ordered groups of differnetial operators. Moreover, there is also obtained a regularly preordered transpositions hypergroup of considered partial differntial operators.


Sign in / Sign up

Export Citation Format

Share Document