An optimal scheme for multiple roots of nonlinear equations with eighth-order convergence

2018 ◽  
Vol 56 (7) ◽  
pp. 2069-2084 ◽  
Author(s):  
Ramandeep Behl ◽  
Ali Saleh Alshomrani ◽  
S. S. Motsa
2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Tahereh Eftekhari

Based on iterative methods without memory of eighth-order convergence proposed by Thukral (2012), some iterative methods with memory and high efficiency index are presented. We show that the order of convergence is increased without any additional function evaluations. Numerical comparisons are made to show the performance of the presented methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Gustavo Fernández-Torres ◽  
Juan Vásquez-Aquino

We present new modifications to Newton's method for solving nonlinear equations. The analysis of convergence shows that these methods have fourth-order convergence. Each of the three methods uses three functional evaluations. Thus, according to Kung-Traub's conjecture, these are optimal methods. With the previous ideas, we extend the analysis to functions with multiple roots. Several numerical examples are given to illustrate that the presented methods have better performance compared with Newton's classical method and other methods of fourth-order convergence recently published.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 672 ◽  
Author(s):  
Saima Akram ◽  
Fiza Zafar ◽  
Nusrat Yasmin

In this paper, we introduce a new family of efficient and optimal iterative methods for finding multiple roots of nonlinear equations with known multiplicity ( m ≥ 1 ) . We use the weight function approach involving one and two parameters to develop the new family. A comprehensive convergence analysis is studied to demonstrate the optimal eighth-order convergence of the suggested scheme. Finally, numerical and dynamical tests are presented, which validates the theoretical results formulated in this paper and illustrates that the suggested family is efficient among the domain of multiple root finding methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mohammed Barrada ◽  
Mariya Ouaissa ◽  
Yassine Rhazali ◽  
Mariyam Ouaissa

In this paper, we present a new family of methods for finding simple roots of nonlinear equations. The convergence analysis shows that the order of convergence of all these methods is three. The originality of this family lies in the fact that these sequences are defined by an explicit expression which depends on a parameter p where p is a nonnegative integer. A first study on the global convergence of these methods is performed. The power of this family is illustrated analytically by justifying that, under certain conditions, the method convergence’s speed increases with the parameter p. This family’s efficiency is tested on a number of numerical examples. It is observed that our new methods take less number of iterations than many other third-order methods. In comparison with the methods of the sixth and eighth order, the new ones behave similarly in the examples considered.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Alicia Cordero ◽  
Mojtaba Fardi ◽  
Mehdi Ghasemi ◽  
Juan R. Torregrosa

We propose a family of eighth-order iterative methods without memory for solving nonlinear equations. The new iterative methods are developed by using weight function method and using an approximation for the last derivative, which reduces the required number of functional evaluations per step. Their efficiency indices are all found to be 1.682. Several examples allow us to compare our algorithms with known ones and confirm the theoretical results.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1020
Author(s):  
Syahmi Afandi Sariman ◽  
Ishak Hashim ◽  
Faieza Samat ◽  
Mohammed Alshbool

In this study, we propose an extension of the modified Newton-Househölder methods to find multiple roots with unknown multiplicity of nonlinear equations. With four functional evaluations per iteration, the proposed method achieves an optimal eighth order of convergence. The higher the convergence order, the quicker we get to the root with a high accuracy. The numerical examples have shown that this scheme can compete with the existing methods. This scheme is also stable across all of the functions tested based on the graphical basins of attraction.


2019 ◽  
Vol 17 (01) ◽  
pp. 1843011
Author(s):  
Ramandeep Behl ◽  
Changbum Chun ◽  
Ali Saleh Alshormani ◽  
S. S. Motsa

In this paper, we present a new and interesting optimal scheme of order eight in a general way for solving nonlinear equations, numerically. The beauty of our scheme is that it is capable of producing further new and interesting optimal schemes of order eight from every existing optimal fourth-order scheme whose first substep employs Newton’s method. The construction of this scheme is based on rational functional approach. The theoretical and computational properties of the proposed scheme are fully investigated along with a main theorem which establishes the order of convergence and asymptotic error constant. Several numerical examples are given and analyzed in detail to demonstrate faster convergence and higher computational efficiency of our methods.


2016 ◽  
Vol 14 (1) ◽  
pp. 443-451 ◽  
Author(s):  
Somayeh Sharifi ◽  
Massimiliano Ferrara ◽  
Mehdi Salimi ◽  
Stefan Siegmund

AbstractIn this paper, we present a family of three-point with eight-order convergence methods for finding the simple roots of nonlinear equations by suitable approximations and weight function based on Maheshwari’s method. Per iteration this method requires three evaluations of the function and one evaluation of its first derivative. These class of methods have the efficiency index equal to ${8^{{\textstyle{1 \over 4}}}} \approx 1.682$. We describe the analysis of the proposed methods along with numerical experiments including comparison with the existing methods. Moreover, the attraction basins of the proposed methods are shown with some comparisons to the other existing methods.


Sign in / Sign up

Export Citation Format

Share Document