attraction basins
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 27)

H-INDEX

10
(FIVE YEARS 4)

2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Léandre Kamdjeu Kengne ◽  
Karthikeyan Rajagopal ◽  
Nestor Tsafack ◽  
Paul Didier Kamdem Kuate ◽  
Balamurali Ramakrishnan ◽  
...  

This paper addresses the effects of offset terms on the dynamics of a modified Chua’s oscillator. The mathematical model is derived using Kirchhoff’s laws. The model is analyzed with the help of the maximal Lyapunov exponent, bifurcation diagrams, phase portraits, and basins of attraction. The investigations show that the offset terms break the symmetry of the system, generating more complex nonlinear phenomena like coexisting asymmetric bifurcations, coexisting asymmetric attractors, asymmetric double-scroll chaotic attractors and asymmetric attraction basins. Also, a hidden attractor (period-1 limit cycle) is found when varying the initial conditions. More interestingly, this latter attractor coexists with all other self-excited ones. A microcontroller-based implementation of the circuit is carried out to verify the numerical investigations.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3036
Author(s):  
Mihael Baketarić ◽  
Marjan Mernik ◽  
Tomaž Kosar

Context: In this study, we report on a Systematic Mapping Study (SMS) for attraction basins in the domain of metaheuristics. Objective: To identify research trends, potential issues, and proposed solutions on attraction basins in the field of metaheuristics. Research goals were inspired by the previous paper, published in 2021, where attraction basins were used to measure exploration and exploitation. Method: We conducted the SMS in the following steps: Defining research questions, conducting the search in the ISI Web of Science and Scopus databases, full-text screening, iterative forward and backward snowballing (with ongoing full-text screening), classifying, and data extraction. Results: Attraction basins within discrete domains are understood far better than those within continuous domains. Attraction basins on dynamic problems have hardly been investigated. Multi-objective problems are investigated poorly in both domains, although slightly more often within a continuous domain. There is a lack of parallel and scalable algorithms to compute attraction basins and a general framework that would unite all different definitions/implementations used for attraction basins. Conclusions: Findings regarding attraction basins in the field of metaheuristics reveal that the concept alone is poorly exploited, as well as identify open issues where researchers may improve their research.


2021 ◽  
Vol 9 ◽  
Author(s):  
Haoyan Liu ◽  
Xin Wang ◽  
Longzhao Liu ◽  
Zhoujun Li

Competitive cognition dynamics are widespread in modern society, especially with the rise of information-technology ecosystem. While previous works mainly focus on internal interactions among individuals, the impacts of the external public opinion environment remain unknown. Here, we propose a heuristic model based on co-evolutionary game theory to study the feedback-evolving dynamics of competitive cognitions and the environment. First, we show co-evolutionary trajectories of strategy-environment system under all possible circumstances. Of particular interest, we unveil the detailed dynamical patterns under the existence of an interior saddle point. In this situation, two stable states coexist in the system and both cognitions have a chance to win. We highlight the emergence of bifurcation phenomena, indicating that the final evolutionary outcome is sensitive to initial conditions. Further, the attraction basins of two stable states are not only influenced by the position of the interior saddle point but also affected by the relative speed of environmental feedbacks.


2021 ◽  
Vol 167 ◽  
pp. 114353
Author(s):  
Jernej Jerebic ◽  
Marjan Mernik ◽  
Shih-Hsi Liu ◽  
Miha Ravber ◽  
Mihael Baketarić ◽  
...  

2021 ◽  
Author(s):  
Ronghao Li ◽  
Zenghui Wang ◽  
Enzeng Dong

Abstract In this paper, a new type of non-volatile locally active memristor with bi-stability is proposed by injecting appropriate voltage pulses to realize a switching mechanism between two stable states. It is found that the memristive parameters of the new memristor can affect the local activity, which has been rarely reported, and this phenomenon is explained based on mathematical analyses and numerical simulations. Then, a locally active memristive coupled neuron model is constructed using the proposed memristor as a connecting synapse. The parameter-associated dynamical behaviors are revealed by bifurcation plots, phase plane portraits and dynamical evolution maps. Moreover, the bi-stability phenomenon of the new coupled neuron model is disclosed by local attraction basins, and the periodic burster and multi-scroll chaotic burster are found if a multi-level pulse current is used to imitate a periodical external stimulus on the neurons. The Hamiltonian energy function is calculated and analyzed with or without external excitation. Finally, the neuronal circuit is designed and implemented, which can mimic electrical activity of the neurons and is useful for physical applications. The experimental results captured from the analog circuit are consistent well with the numerical simulation results.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-26
Author(s):  
Isaac Sami Doubla ◽  
Jacques Kengne ◽  
Raoul Blaise Wafo Tekam ◽  
Zeric Tabekoueng Njitacke ◽  
Clotaire Thierry Sanjong Dagang

A generalized third-order autonomous Duffing–Holmes system is proposed and deeply investigated. The proposed system is obtained by adding a parametric quadratic term m x 2 to the cubic nonlinear term − x 3 of an existing third-order autonomous Duffing–Holmes system. This modification allows the system to feature smoothly adjustable nonlinearity, symmetry, and nontrivial equilibria. A particular attention is given to the effects of symmetric and asymmetric nonlinearity on the dynamics of the system. For the specific case of m = 0 , the system is symmetric and interesting phenomena are observed, namely, coexistence of symmetric bifurcations, presence of parallel branches, and the coexistence of four (periodic-chaotic) and six (periodic) symmetric attractors. For m ≠ 0 , the system loses its symmetry. This favors the emergence of other behaviors, such as the coexistence of asymmetric bifurcations, involving the coexistence of several asymmetric attractors (periodic-periodic or periodic-chaotic). All these phenomena have been numerically highlighted using nonlinear dynamic tools (bifurcation diagrams, Lyapunov exponents, phase portraits, time series, frequency spectra, Poincaré section, cross sections of the attraction basins, etc.) and an analog computer of the system. In fact, PSpice simulations of the latter confirm numerical results. Moreover, amplitude control and synchronization strategies are also provided in order to promote the exploitation of the proposed system in engineering.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Quan Xu ◽  
Xiao Tan ◽  
Yunzhen Zhang ◽  
Han Bao ◽  
Yihua Hu ◽  
...  

By coupling a diode bridge-based second-order memristor and an active voltage-controlled memristor with a capacitor, a three-element-based memristive circuit is synthesized and its system model is then built. The boundedness of the three-element-based memristive circuit is theoretically proved by employing the contraction mapping principle. Besides, the stability distributions of equilibrium points are theoretically and numerically expounded in a 2D parameter plane. The results imply the memristive circuit has a zero unstable saddle focus and a pair of nonzero stable node-foci or unstable saddle-foci depending on the considered parameters. The dynamical behaviors include point attractor, period, chaos, coexisting bifurcation mode, period-doubling bifurcation route, and crisis scenarios, which are explored using some common dynamical methods. Of particular concern, riddled attraction basins and multistability are uncovered under two sets of specified model parameters nearing the tiny neighborhood of crisis scenarios by local attraction basins and phase plane plots. The riddled attraction basins with island-like structure demonstrate that their dynamical behaviors are extremely sensitive to the initial conditions, resulting in the coexistence of limit cycles with period-2 and period-6, as well as the coexistence of period-1 limit cycles and single-scroll chaotic attractors. Moreover, a feasible on-breadboard hardware circuit is manually made and the experimental measurements are executed, upon which phase plane trajectories for some discrete model parameters are captured to further confirm the numerically simulated ones.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1132 ◽  
Author(s):  
Sameh S. Askar

We investigate the complex dynamic characteristics of a duopoly game whose players adopt a gradient-based mechanism to update their outputs and one of them possesses in some way certain information about his/her opponent. We show that knowing such asymmetric information does not give any advantages but affects the stability of the game’s equilibrium points. Theoretically, we prove that the equilibrium points can be destabilized through Neimark-Sacker followed by flip bifurcation. Numerically, we prove that the map describing the game is noninvertible and gives rise to several stable attractors (multistability). Furthermore, the dynamics of the map give different shapes of quite complicated attraction basins of periodic cycles.


Circuit World ◽  
2020 ◽  
Vol 47 (1) ◽  
pp. 61-70
Author(s):  
Mengjie Hua ◽  
Shuo Yang ◽  
Quan Xu ◽  
Mo Chen ◽  
Huagan Wu ◽  
...  

Purpose The purpose of this paper is to develop two types of simple jerk circuits and to carry out their dynamical analyses using a unified mathematical model. Design/methodology/approach Two types of simple jerk circuits only involve a nonlinear resistive feedback channel composited by a nonlinear device and an inverter. The nonlinear device is implemented through parallelly connecting two diode-switch-based series branches. According to the classifications of switch states and circuit types, a unified mathematical model is established for these two types of simple jerk circuits, and the origin symmetry and scale proportionality along with the origin equilibrium stability are thereby discussed. The coexisting bifurcation behaviors in the two types of simple jerk systems are revealed by bifurcation plots, and the origin symmetry and scale proportionality are effectively demonstrated by phase plots and attraction basins. Moreover, hardware experimental measurements are performed, from which the captured results well validate the numerical simulations. Findings Two types of simple jerk circuits are unified through parallelly connecting two diode-switch-based series branches and a unified mathematical model with six kinds of nonlinearities is established. Especially, the origin symmetry and scale proportionality for the two types of simple jerk systems are discussed quantitatively. These jerk circuits are all simple and inexpensive, easy to be physically implemented, which are helpful to explore chaos-based engineering applications. Originality/value Unlike previous works, the significant values are that through unifying these two types of simple jerk systems, a unified mathematical model with six kinds of nonlinearities is established, upon which symmetrically scaled coexisting behaviors are numerically disclosed and experimentally demonstrated.


Sign in / Sign up

Export Citation Format

Share Document