Stochastic and Risk Management Models and Solution Algorithm for Natural Gas Transmission Network Expansion and LNG Terminal Location Planning

2010 ◽  
Vol 147 (2) ◽  
pp. 337-357 ◽  
Author(s):  
Qipeng P. Zheng ◽  
Panos M. Pardalos
Author(s):  
Paul Cousens ◽  
Chas Jandu

As part of an important project to reinforce the natural gas transmission network, a new pipeline has been constructed to transport natural gas from a major UK LNG storage facility into the national transmission system. The project involved the installation of several sections by trenchless methods, namely auger boring for a number of road crossings and significant lengths of horizontal directional drilling (HDD) beneath railroads, canals and marshland. The installation of pipelines using trenchless techniques such as HDD continues to increase in popularity. The various methods available offer advantages over traditional open cut techniques, in particular much reduced disruption during the construction of road and rail crossings. Furthermore, increased awareness and responsibility towards the environment leads us to seek installation methods that cause the least disruption at the surface and have the least impact to the environment. It was required to assess the proposed crossing designs against acceptable stress limits set out in company specifications and against the requirements of UK design code IGE/TD/1 Edition 4 [1], which requires that ‘additional loads’ such as soil loadings, thermal loads, settlement and traffic loading are accounted for within the stress calculations. However, it does not stipulate the sources of such equations and the pipeline engineer must rely on other methods and published sources of information. This paper presents the method used to analyse those sections of the new pipeline installed by auger boring and HDD focusing on the methods and formulae used to calculate the stresses in the pipeline from all loading sources.


2018 ◽  
Vol 129 ◽  
pp. 122-131 ◽  
Author(s):  
Bohong Wang ◽  
Meng Yuan ◽  
Haoran Zhang ◽  
WenJie Zhao ◽  
Yongtu Liang

Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1873 ◽  
Author(s):  
David A. Anderson

Transmission pipelines deliver natural gas to consumers around the world for the production of heat, electricity, and organic chemicals. In the United States, 2.56 million miles (4.12 million km) of pipelines carry natural gas to more than 75 million customers. With the benefits of pipelines come the risks to health and property posed by leaks and explosions. Proposals for new and recommissioned pipelines challenge host communities with uncertainty and difficult decisions about risk management. The appropriate community response depends on the risk level, the potential cost, and the prospect for compensation in the event of an incident. This article provides information on the risks and expected costs of pipeline leaks and explosions in the United States, including the incident rates, risk factors, and magnitude of harm. Although aggregated data on pipeline incidents are available, broadly inclusive data do not serve the needs of communities that must make critical decisions about hosting a pipeline for natural gas transmission. This article breaks down the data relevant to such communities and omits incidents that occurred offshore or as part of gas gathering or local distribution. The article then explains possible approaches to risk management relevant to communities, pipeline companies, and policymakers.


Sign in / Sign up

Export Citation Format

Share Document