Lagrange Multiplier Characterizations of Solution Sets of Constrained Nonsmooth Pseudolinear Optimization Problems

2013 ◽  
Vol 160 (3) ◽  
pp. 763-777 ◽  
Author(s):  
S. K. Mishra ◽  
B. B. Upadhyay ◽  
Le Thi Hoai An
Author(s):  
B. K. Kannan ◽  
Steven N. Kramer

Abstract An algorithm for solving nonlinear optimization problems involving discrete, integer, zero-one and continuous variables is presented. The augmented Lagrange multiplier method combined with Powell’s method and Fletcher & Reeves Conjugate Gradient method are used to solve the optimization problem where penalties are imposed on the constraints for integer / discrete violations. The use of zero-one variables as a tool for conceptual design optimization is also described with an example. Several case studies have been presented to illustrate the practical use of this algorithm. The results obtained are compared with those obtained by the Branch and Bound algorithm. Also, a comparison is made between the use of Powell’s method (zeroth order) and the Conjugate Gradient method (first order) in the solution of these mixed variable optimization problems.


Author(s):  
Kung-Fu Ng ◽  
David Yost

AbstractThe notion of quasi-regularity, defined for optimization problems in Rn, is extended to the Banach space setting. Examples are given to show that our definition of quasi-regularity is more natural than several other possibilities in the general situation. An infinite dimensional version of the Lagrange multiplier rule is established.


Author(s):  
H. D. Tuan

AbstractWe prove a continuous version of a relaxation theorem for the nonconvex Darboux problem xlt ε F(t, τ, x, xt, xτ). This result allows us to use Warga's open mapping theorem for deriving necessary conditions in the form of a maximum principle for optimization problems with endpoint constraints. Neither constraint qualification nor regularity assumption is supposed.


Sign in / Sign up

Export Citation Format

Share Document