Optimal VLSI Delay Tuning by Wire Shielding

2016 ◽  
Vol 170 (3) ◽  
pp. 1060-1067 ◽  
Author(s):  
Binyamin Frankel ◽  
Shmuel Wimer
Keyword(s):  
2010 ◽  
Vol 197 (5) ◽  
pp. 605-613 ◽  
Author(s):  
Cornelia Hagemann ◽  
Marianne Vater ◽  
Manfred Kössl

2008 ◽  
Vol 119 (9) ◽  
pp. e124
Author(s):  
J.C. Hechavarria Cueria ◽  
E.C. Mora Macias ◽  
A. Cobo Cuan

1988 ◽  
Vol 59 (2) ◽  
pp. 623-635 ◽  
Author(s):  
M. Kawasaki ◽  
D. Margoliash ◽  
N. Suga

1. FM-FM neurons in the auditory cortex of the mustached bat are sensitive to a pair of frequency-modulated (FM) sounds that simulates an FM component of the orientation sound and an FM component of the echo. These neurons are tuned to particular delays between the two FM components, suggesting an encoding of target range information. The response properties of these FM-FM neurons, however, have previously been studied only with synthesized orientation sounds and echoes delivered from a loud-speaker as substitutes for the bat's own orientation sounds and corresponding echoes. In this study, the combination sensitivity and delay tuning of FM-FM neurons were examined while the bat was actively vocalizing. 2. When the bat produced orientation sounds in an anechoic environment, or synthesized single FM echoes were delivered to a silent bat, the FM-FM neurons showed weak or no response. In contrast, when synthesized FM echoes were delivered with a particular delay from the FM component of the vocalized orientation sounds, the FM-FM neurons exhibited strong facilitative responses. 3. In both the vocalizing bats and the silent bats with substituted synthesized orientation sounds, all FM-FM neurons tested responded preferentially to the same echo harmonic (FM2, FM3, or FM4). 4. In vocalizing bats, FM-FM neurons showed maximum response to an echo FM component delivered with a particular delay (best delay) from an FM component in the orientation sound. Best delays measured with vocalized orientation sounds were nearly the same as those measured with synthesized orientation sounds. 5. The equivalent effect of a vocalized orientation sound and a synthesized FM1 component on the activity of FM-FM neurons indicates that, during echolocation, the FM1 component in the vocalized orientation sound stimulates the auditory system and conditions the FM-FM neurons to be sensitive to echoes with particular delays from the vocalized orientation sounds. 6. The amount of vocal self-stimulation to the inner ear by the bat's own vocalized sounds was measured by recording cochlear microphonic potentials (CMs). Spectral analysis of CM indicated that the amount of vocal self-stimulation by each harmonic of an orientation sound was equivalent to a sound of 70 dB sound pressure level (SPL) for the first harmonic (H1), 91 dB SPL for H2, 83 dB SPL for H3, and 70 dB SPL for H4, when the amplitude of the vocalized sound was 117 dB SPL at 5 cm in front of the bat's mouth.


2014 ◽  
Vol 116 (13) ◽  
pp. 133101 ◽  
Author(s):  
Boyun Wang ◽  
Tao Wang ◽  
Jian Tang ◽  
Xiaoming Li ◽  
Youjiang Zhu

2019 ◽  
Vol 37 (19) ◽  
pp. 4976-4984 ◽  
Author(s):  
Laurens Bliek ◽  
Sander Wahls ◽  
Ilka Visscher ◽  
Caterina Taddei ◽  
Roelof Bernardus Timens ◽  
...  

1999 ◽  
Vol 82 (3) ◽  
pp. 1326-1338 ◽  
Author(s):  
Christine V. Portfors ◽  
Jeffrey J. Wenstrup

We examined response properties of delay-tuned neurons in the central nucleus of the inferior colliculus (ICC) of the mustached bat. In the mustached bat, delay-tuned neurons respond best to the combination of the first-harmonic, frequency-modulated (FM1) sweep in the emitted pulse and a higher harmonic frequency-modulated (FM2, FM3 or FM4) component in returning echoes and are referred to as FM-FM neurons. We also examined H1-CF2 neurons. H1-CF2 neurons responded to simultaneous presentation of the first harmonic (H1) in the emitted pulse and the second constant frequency (CF2) component in returning echoes. These neurons served as a comparison as they are thought to encode different features of sonar targets than FM-FM neurons. Only 7% of our neurons (14/198) displayed a single excitatory tuning curve. The rest of the neurons (184) displayed complex responses to sounds in two separate frequency bands. The majority (51%, 101) of neurons were facilitated by the combination of specific components in the mustached bat’s vocalizations. Twenty-five percent showed purely inhibitory interactions. The remaining neurons responded to two separate frequencies, without any facilitation or inhibition. FM-FM neurons (69) were facilitated by the FM1 component in the simulated pulse and a higher harmonic FM component in simulated echoes, provided the high-frequency signal was delayed the appropriate amount. The delay producing maximal facilitation (“best delay”) among FM-FM neurons ranged between 0 and 20 ms, corresponding to target distances ≤3.4 m. Sharpness of delay tuning varied among FM-FM neurons with 50% delay widths between 2 and 13 ms. On average, the facilitated responses of FM-FM neurons were 104% greater than the sum of the responses to the two signals alone. In comparing response properties of delay-tuned, FM-FM neurons in the ICC with those in the medial geniculate body (MGB) from other studies, we find that the range of best delays, sharpness of delay tuning and strength of facilitation are similar in the ICC and MGB. This suggests that by the level of the IC, the basic response properties of FM-FM neurons are established, and they do not undergo extensive transformations with ascending auditory processing.


Sign in / Sign up

Export Citation Format

Share Document