Boundary Layer Phenomenon for a First Order Descriptor Equation with Small Parameter on the Right-Hand Side

2020 ◽  
Vol 250 (1) ◽  
pp. 175-181
Author(s):  
V. I. Uskov
Author(s):  
Vladimir I. Uskov

The rigidity of a dynamical system described by a first-order differential equationwith an irreversible operator at the highest derivative is investigated. The system is perturbed by an operator addition of the order of the second power of a small parameter. Conditions under which the system is robust with respect to these disturbances are determined as well as conditions under which the influence of disturbances is significant. For this, the bifurcation equation is derived. It is used to set the type of boundary layer functions. As an example, we investigate the initial boundary value problem for a system of partial differential equations with a mixed second partial derivative which occurs in the study of the processes of sorption anddesorption of gases, drying processes, etc.


Author(s):  
D. Breit ◽  
A. Cianchi ◽  
L. Diening ◽  
S. Schwarzacher

AbstractAn optimal first-order global regularity theory, in spaces of functions defined in terms of oscillations, is established for solutions to Dirichlet problems for the p-Laplace equation and system, with the right-hand side in divergence form. The exact mutual dependence among the regularity of the solution, of the datum on the right-hand side, and of the boundary of the domain in these spaces is exhibited. A comprehensive formulation of our results is given in terms of Campanato seminorms. New regularity results in customary function spaces, such as Hölder, $$\text {BMO}$$ BMO and $${{\,\mathrm{VMO}\,}}$$ VMO spaces, follow as a consequence. Importantly, the conclusions are new even in the linear case when $$p=2$$ p = 2 , and hence the differential operator is the plain Laplacian. Yet in this classical linear setting, our contribution completes and augments the celebrated Schauder theory in Hölder spaces. A distinctive trait of our results is their sharpness, which is demonstrated by a family of apropos examples.


Author(s):  
Manuel Núñez ◽  
Alberto Lastra

The effects of the flow of an electrically conducting fluid upon a magnetic field anchored at the boundary of a domain are studied. By taking the resistivity as a small parameter, the first-order approximation of an asymptotic analysis yields a boundary layer for the magnetic potential. This layer is analysed both in general and in three particular cases, showing that while in general its effects decrease exponentially with the distance to the boundary, several additional effects are highly relevant.


1985 ◽  
Vol 90 (A12) ◽  
pp. 12159 ◽  
Author(s):  
B. T. Tsurutani ◽  
I. G. Richardson ◽  
R. M. Thorne ◽  
W. Butler ◽  
E. J. Smith ◽  
...  

1986 ◽  
Vol 91 (A4) ◽  
pp. 4606
Author(s):  
B. T. Tsurutani ◽  
I. G. Richardson ◽  
R. M. Thorne ◽  
W. Butler ◽  
E. J. Smith ◽  
...  

2020 ◽  
Author(s):  
Daniil Korovinskiy ◽  
Andrey Divin ◽  
Vladimir Semenov ◽  
Nikolai Erkaev ◽  
Stefan Kiehas

<p>The problem of steady symmetrical two-dimensional magnetic reconnection is addressed in terms of the EMHD approximation. In the immediate vicinity of the X-point, this approach has been proven to be an appropriate frame for the reconstruction problem, expressed, particularly, by the Poisson equation for the magnetic potential <em>A</em>, where the right-hand side contains the out-of-plane electron current density with reversed sign. With boundary conditions fixed at some curve (the satellite trajectory), and assuming the right-hand side to be a function of <em>A</em>, one arrives at an ill-posed problem for the Grad-Shafranov equation. The further simplification of the problem may be achieved by using the boundary layer approximation, since magnetic configuration in reconnection region is highly stretched. The benchmark reconstruction of PIC-simulation data, using four numerical techniques, has shown that the main contribution for inaccuracy arises from replacing the Poisson equation by the Grad-Shafranov one. A boundary layer approximation, in turn, does not affect the accuracy significantly; in some cases this approach can appear even the most appropriate. </p>


1993 ◽  
Vol 03 (04) ◽  
pp. 477-483
Author(s):  
D.D. BAINOV ◽  
S.I. KOSTADINOV ◽  
NGUYEN VAN MINH ◽  
P.P. ZABREIKO

Continuous dependence of the solutions of an impulsive differential equation on a small parameter is proved under the assumption that the right-hand side of the equation and the impulse operators satisfy conditions of Lipschitz type.


Author(s):  
Alla Savranska ◽  
Oleksandr Denisenko

The subject of research in the article is sigularly perturbed controllable systems of differential equations containing terms with a small parameters on the right-hand side, which are not completely known, but only satisfy some constraints. The aim of the work is to expand the study of the behavior of solutions of singularly perturbed systems of differential equations to the case when the system is influenced not only by dynamic (small factor at the derivative) but also parametric (small factor at the right side of equations) uncertainties and to determine conditions under which such systems will be asymptotically resistant to any perturbations, estimate the upper limit of the small parameter, so that for all values of this parameter less than the obtained estimate, the undisturbed solution of the system was asymptotically stable. The following problems are solved in the article: singularly perturbed systems of differential equations with regular perturbations in the form of terms with a small parameter in the right-hand sides, which are not fully known, are investigated; an estimate is made of the areas of asymptotic stability of the unperturbed solution of such systems, that is, the class of systems that can be investigated for stability is expanded, the formulas obtained that allow one to analyze the asymptotic stability of solutions to systems even under conditions of incomplete information about the perturbations acting on them. The following methods are used: mathematical modeling of complex control systems; vector Lyapunov functions investigation of asymptotic stability of solutions of systems of differential equations. The following results were obtained: an estimate was made for the upper bound of a small parameter for sigularly perturbed systems of differential equations with fully known parametric (fully known) and dynamic uncertainties, such that for all values of this parameter less than the obtained estimate, such an unperturbed solution is asymptotically stable; a theorem is proved in which sufficient conditions for the uniform asymptotic stability of such a system are formulated. Conclusions: the method of vector Lyapunov functions extends to the class of singularly perturbed systems of differential equations with a small factor in the right-hand sides, which are not completely known, but only satisfy certain constraints.


Author(s):  
Vladimir I. Uskov

We consider the Cauchy problem for a first-order differentialequation in a Banach space. The equation contains a small parameter in the highest derivative and a Fredholm operator perturbed by an operator addition on the right-hand side. Systems with small parameter in the highest derivative describe the motion of a viscous flow, the behavior of thin and flexible plates and shells, the process of a supersonic viscous gas flow around a blunt body, etc. The presence of a boundary layer phenomenon is revealed; in this case, even a small additive has a strong influence on the behavior of the solution. Asymptotic expansion of the solution in powers of small parameter is constructed by means of the Vasil’yeva- Vishik-Lyusternik method. Asymptotic property of the expansion is proved. To construct the regular part of the expansion, the equation decomposition method is used. It is consisted in a step-by-step transition to similar problems of decreasing dimensions.


Author(s):  
L.I. Rubina ◽  
O.N. Ul'yanov

An algorithm is proposed for obtaining solutions of partial differential equations with right-hand side defined on the grid $\{ x_{1}^{\mu}, x_{2}^{\mu}, \ldots, x_{n}^{\mu}\},\ (\mu=1,2,\ldots,N)\colon f_{\mu}=f(x_{1}^{\mu}, x_{2}^{\mu}, \ldots, x_{n}^{\mu}).$ Here $n$ is the number of independent variables in the original partial differential equation, $N$ is the number of rows in the grid for the right-hand side, $f=f( x_{1}, x_{2}, \ldots, x_{n})$ is the right-hand of the original equation. The algorithm implements a reduction of the original equation to a system of ordinary differential equations (ODE system) with initial conditions at each grid point and includes the following sequence of actions. We seek a solution to the original equation, depending on one independent variable. The original equation is associated with a certain system of relations containing arbitrary functions and including the partial differential equation of the first order. For an equation of the first order, an extended system of equations of characteristics is written. Adding to it the remaining relations containing arbitrary functions, and demanding that these relations be the first integrals of the extended system of equations of characteristics, we arrive at the desired ODE system, completing the reduction. The proposed algorithm allows at each grid point to find a solution of the original partial differential equation that satisfies the given initial and boundary conditions. The algorithm is used to obtain solutions of the Poisson equation and the equation of unsteady axisymmetric filtering at the points of the grid on which the right-hand sides of the corresponding equations are given.


Sign in / Sign up

Export Citation Format

Share Document