On the Solvability of Stochastic Helmholtz Problem

2021 ◽  
Vol 253 (2) ◽  
pp. 297-305
Author(s):  
M. I. Tleubergenov ◽  
D. T. Azhymbaev
Keyword(s):  
Author(s):  
Yan Tian

AbstractIn this paper, we provide further illustrations of prolate interpolation and pseudospectral differentiation based on the barycentric perspectives. The convergence rates of the barycentric prolate interpolation and pseudospectral differentiation are derived. Furthermore, we propose the new preconditioner, which leads to the well-conditioned prolate collocation scheme. Numerical examples are included to show the high accuracy of the new method. We apply this approach to solve the second-order boundary value problem and Helmholtz problem.


2013 ◽  
Vol 124 (4) ◽  
pp. 636-640 ◽  
Author(s):  
B. Benali ◽  
B. Boudjedaa ◽  
M.T. Meftah

2015 ◽  
Vol 143 (9) ◽  
pp. 3838-3855 ◽  
Author(s):  
Steven Sandbach ◽  
John Thuburn ◽  
Danail Vassilev ◽  
Michael G. Duda

Abstract An important question for atmospheric modeling is the viability of semi-implicit time integration schemes on massively parallel computing architectures. Semi-implicit schemes can provide increased stability and accuracy. However, they require the solution of an elliptic problem at each time step, creating concerns about their parallel efficiency and scalability. Here, a semi-implicit (SI) version of the Model for Prediction Across Scales (MPAS) is developed and compared with the original model version, which uses a split Runge–Kutta (SRK3) time integration scheme. The SI scheme is based on a quasi-Newton iteration toward a Crank–Nicolson scheme. Each Newton iteration requires the solution of a Helmholtz problem; here, the Helmholtz problem is derived, and its solution using a geometric multigrid method is described. On two standard test cases, a midlatitude baroclinic wave and a small-planet nonhydrostatic gravity wave, the SI and SRK3 versions produce almost identical results. On the baroclinic wave test, the SI version can use somewhat larger time steps (about 60%) than the SRK3 version before losing stability. The SI version costs 10%–20% more per step than the SRK3 version, and the weak and strong scalability characteristics of the two versions are very similar for the processor configurations the authors have been able to test (up to 1920 processors). Because of the spatial discretization of the pressure gradient in the lowest model layer, the SI version becomes unstable in the presence of realistic orography. Some further work will be needed to demonstrate the viability of the SI scheme in this case.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Qing Chen ◽  
Baoqing Liu ◽  
Qikui Du

The nonoverlapping domain decomposition method, which is based on the natural boundary reduction, is applied to solve the exterior Helmholtz problem over a three-dimensional domain. The basic idea is to introduce a spherical artificial boundary; the original unbounded domain is changed into a bounded subdomain and a typical unbounded region; then, a Dirichlet-Nuemann (D-N) alternating method is presented; the finite element method and natural boundary element methods are alternately applied to solve the problems in the bounded subdomain and the typical unbounded subdomain. The convergence of the D-N alternating algorithm and its discretization are studied. Some numerical experiments are presented to show the performance of this method.


Sign in / Sign up

Export Citation Format

Share Document