On Discrete Spectrum of a Model Graph with Loop and Small Edges

Author(s):  
D. I. Borisov ◽  
M. N. Konyrkulzhaeva ◽  
A. I. Mukhametrakhimova
1995 ◽  
Vol 60 (11) ◽  
pp. 1815-1829 ◽  
Author(s):  
Jaromír Jakeš

The problem of finding a relaxation time spectrum best fitting dynamic moduli data in the least-squares sense is shown to be well-posed and to yield a discrete spectrum, provided the data cannot be fitted exactly, i.e., without any deviation of data and calculated values. Properties of the resulting spectrum are discussed. Examples of discrete spectra obtained from simulated literature data and experimental literature data on polymers are given. The problem of smoothing discrete spectra when continuous ones are expected is discussed. A detailed study of an integral transform inversion under the non-negativity constraint is given in Appendix.


1985 ◽  
Vol 40 (10) ◽  
pp. 1052-1058 ◽  
Author(s):  
Heinz K. H. Siedentop

An upper bound on the dimension of eigenspaces of multiparticle Schrödinger operators is given. Its relation to upper and lower bounds on the eigenvalues is discussed.


Author(s):  
Piero D’Ancona ◽  
Luca Fanelli ◽  
Nico Michele Schiavone

AbstractWe prove that the eigenvalues of the n-dimensional massive Dirac operator $${\mathscr {D}}_0 + V$$ D 0 + V , $$n\ge 2$$ n ≥ 2 , perturbed by a potential V, possibly non-Hermitian, are contained in the union of two disjoint disks of the complex plane, provided V is sufficiently small with respect to the mixed norms $$L^1_{x_j} L^\infty _{{\widehat{x}}_j}$$ L x j 1 L x ^ j ∞ , for $$j\in \{1,\dots ,n\}$$ j ∈ { 1 , ⋯ , n } . In the massless case, we prove instead that the discrete spectrum is empty under the same smallness assumption on V, and in particular the spectrum coincides with the spectrum of the unperturbed operator: $$\sigma ({\mathscr {D}}_0+V)=\sigma ({\mathscr {D}}_0)={\mathbb {R}}$$ σ ( D 0 + V ) = σ ( D 0 ) = R . The main tools used are an abstract version of the Birman–Schwinger principle, which allows in particular to control embedded eigenvalues, and suitable resolvent estimates for the Schrödinger operator.


2004 ◽  
Vol 18 (04n05) ◽  
pp. 555-563 ◽  
Author(s):  
ENRICO CELEGHINI ◽  
MARIO RASETTI

A detailed description of the statistical properties of a system of bosons in a harmonic trap at low temperature, which is expected to bear on the process of BE condensation, is given resorting only to the basic postulates of Gibbs and Bose, without assuming equipartition nor continuum statistics. Below Tc such discrete spectrum theory predicts for the thermo-dynamical variables a behavior different from the continuum case. In particular a new critical temperature Td emerges where the specific heat exhibits a λ-like spike.


2003 ◽  
Vol 475 ◽  
pp. 377-408 ◽  
Author(s):  
SERAFIM KALLIADASIS ◽  
ALLA KIYASHKO ◽  
E. A. DEMEKHIN

We consider the motion of a liquid film falling down a heated planar substrate. Using the integral-boundary-layer approximation of the Navier–Stokes/energy equations and free-surface boundary conditions, it is shown that the problem is governed by two coupled nonlinear partial differential equations for the evolution of the local film height and temperature distribution in time and space. Two-dimensional steady-state solutions of these equations are reported for different values of the governing dimensionless groups. Our computations demonstrate that the free surface develops a bump in the region where the wall temperature gradient is positive. We analyse the linear stability of this bump with respect to disturbances in the spanwise direction. We show that the operator of the linearized system has both a discrete and an essential spectrum. The discrete spectrum bifurcates from resonance poles at certain values of the wavenumber for the disturbances in the transverse direction. The essential spectrum is always stable while part of the discrete spectrum becomes unstable for values of the Marangoni number larger than a critical value. Above this critical Marangoni number the growth rate curve as a function of wavenumber has a finite band of unstable modes which increases as the Marangoni number increases.


Sign in / Sign up

Export Citation Format

Share Document