scholarly journals Tauberian theorems for summability transforms

2005 ◽  
Vol 2005 (1) ◽  
pp. 55-66
Author(s):  
Rohitha Goonatilake

The convolution summability method is introduced as a generalization of the random-walk method. In this paper, two well-known summability analogs concerning the strong law of large numbers (SLLN) and the law of the single logarithm (LSL), that gives the rate of convergence in SLLN for the random-walk method, are extended to this generalized method.

1992 ◽  
Vol 45 (3) ◽  
pp. 479-482 ◽  
Author(s):  
Tien-Chung Hu ◽  
N.C. Weber

For sequences of independent and identically distributed random variables it is well known that the existence of the second moment implies the law of the iterated logarithm. We show that the law of the iterated logarithm does not extend to arrays of independent and identically distributed random variables and we develop an analogous rate result for such arrays under finite fourth moments.


Author(s):  
Li Guan ◽  
Jinping Zhang ◽  
Jieming Zhou

This work proposes the concept of uncorrelation for fuzzy random variables, which is weaker than independence. For the sequence of uncorrelated fuzzy variables, weak and strong law of large numbers are studied under the uniform Hausdorff metric d H ∞ . The results generalize the law of large numbers for independent fuzzy random variables.


2019 ◽  
Vol 33 (4) ◽  
pp. 2315-2336
Author(s):  
Inna M. Asymont ◽  
Dmitry Korshunov

Abstract For an arbitrary transient random walk $$(S_n)_{n\ge 0}$$ ( S n ) n ≥ 0 in $${\mathbb {Z}}^d$$ Z d , $$d\ge 1$$ d ≥ 1 , we prove a strong law of large numbers for the spatial sum $$\sum _{x\in {\mathbb {Z}}^d}f(l(n,x))$$ ∑ x ∈ Z d f ( l ( n , x ) ) of a function f of the local times $$l(n,x)=\sum _{i=0}^n{\mathbb {I}}\{S_i=x\}$$ l ( n , x ) = ∑ i = 0 n I { S i = x } . Particular cases are the number of visited sites [first considered by Dvoretzky and Erdős (Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, pp 353–367, 1951)], which corresponds to the function $$f(i)={\mathbb {I}}\{i\ge 1\}$$ f ( i ) = I { i ≥ 1 } ; $$\alpha $$ α -fold self-intersections of the random walk [studied by Becker and König (J Theor Probab 22:365–374, 2009)], which corresponds to $$f(i)=i^\alpha $$ f ( i ) = i α ; sites visited by the random walk exactly j times [considered by Erdős and Taylor (Acta Math Acad Sci Hung 11:137–162, 1960) and Pitt (Proc Am Math Soc 43:195–199, 1974)], where $$f(i)={\mathbb {I}}\{i=j\}$$ f ( i ) = I { i = j } .


2017 ◽  
Vol 96 (2) ◽  
pp. 333-344
Author(s):  
ALLAN GUT ◽  
ULRICH STADTMÜLLER

The present paper is devoted to complete convergence and the strong law of large numbers under moment conditions near those of the law of the single logarithm (LSL) for independent and identically distributed arrays. More precisely, we investigate limit theorems under moment conditions which are stronger than $2p$ for any $p<2$, in which case we know that there is almost sure convergence to 0, and weaker than $E\,X^{4}/(\log ^{+}|X|)^{2}<\infty$, in which case the LSL holds.


1998 ◽  
Vol 28 (2) ◽  
pp. 595-606
Author(s):  
Travis Lee ◽  
Max Minzner ◽  
Evan Fisher

Sign in / Sign up

Export Citation Format

Share Document