Natural convection of multi-walled carbon nanotube–Fe3O4/water magnetic hybrid nanofluid flowing in porous medium considering the impacts of magnetic field-dependent viscosity

2019 ◽  
Vol 138 (2) ◽  
pp. 1541-1555 ◽  
Author(s):  
S. A. M. Mehryan ◽  
Mohsen Izadi ◽  
Zafar Namazian ◽  
Ali J. Chamkha
2014 ◽  
Vol 19 (1) ◽  
pp. 61-77
Author(s):  
R. Hemalatha

Abstract The effect of a magnetic field dependent viscosity on a Soret driven ferro thermohaline convection in a rotating porous medium has been investigated using the linear stability analysis. The normal mode technique is applied. A wide range of values of the Soret parameter, magnetization parameter, the magnetic field dependent viscosity, Taylor number and the permeability of porous medium have been considered. A Brinkman model is used. Both stationary and oscillatory instabilities have been obtained. It is found that the system stabilizes only through oscillatory mode of instability. It is found that the magnetization parameter and the permeability of the porous medium destabilize the system and the Soret parameter, the magnetic field dependent viscosity and the Taylor number tend to stabilize the system. The results are presented numerically and graphically


2020 ◽  
Vol 25 (1) ◽  
pp. 142-158
Author(s):  
J. Prakash ◽  
P. Kumar ◽  
S. Manan ◽  
K.R. Sharma

AbstractThe effect of magnetic field dependent (MFD) viscosity on the thermal convection in a ferrofluid layer saturating a sparsely distributed porous medium has been investigated by using the Darcy-Brinkman model in the simultaneous presence of a uniform vertical magnetic field and a uniform vertical rotation. A correction is applied to the study of Vaidyanathan et al. [11] which is very important in order to predict the correct behavior of MFD viscosity. A linear stability analysis has been carried out for stationary modes and oscillatory modes separately. The critical wave number and critical Rayleigh number for the onset of instability, for the case of free boundaries, are determined numerically for sufficiently large values of the magnetic parameter M1. Numerical results are obtained and are illustrated graphically. It is shown that magnetic field dependent viscosity has a destabilizing effect on the system for the case of stationary mode and a stabilizing effect for the case of oscillatory mode, whereas magnetization has a destabilizing effect.


Sign in / Sign up

Export Citation Format

Share Document