LBM simulation of MHD nanofluid heat transfer in a square cavity with a cooled porous obstacle: effects of various temperature boundary conditions

Author(s):  
Yuan Ma ◽  
Zhigang Yang
Author(s):  
Ram Satish Kaluri ◽  
Tanmay Basak ◽  
A. R. Balakrishnan

Natural convection is a widely occurring phenomena which has important applications in material processing, energy storage devices, electronic cooling, building ventilation etc. The concept of ‘entropy generation minimization’, which is a thermodynamic approach for optimization, may be very useful in designing efficient thermal systems. In the current study, entropy generation in steady laminar natural convection flow in a square cavity is studied with following isothermal boundary conditions: (1) Bottom wall is uniformly heated (2) Bottom wall is sinusoidally heated. The side walls are maintained cold and the top wall is maintained adiabatic. The thermal boundary condition in non-uniform heating case (case 2) is such that the dimensionless average temperature of the bottom wall is equal to that of uniform heating case (case 1). The prime objective of this work is to investigate the influence of uniform and non-uniform heating on entropy generation. The governing mass, momentum and energy equations are solved using Galerkin finite element method. Streamlines, isotherms, contour maps of entropy generation due to heat transfer and fluid friction are studied for Pr = 0.01 (molten metals) and 7 (water) in range of Ra = 103–105. Detailed analysis on the effect of uniform and non-uniform thermal boundary conditions on entropy generation due to heat transfer and fluid friction has been presented. Also, the average Bejan’s number which indicates the relative dominance of entropy generation due to heat transfer or fluid friction and the total entropy generation are studied for each case.


2005 ◽  
Author(s):  
Satyajit Roy ◽  
Tanmay Basak

A numerical study is performed to investigate the steady laminar natural convection flow in a square cavity with uniformly and non-uniformly heated bottom wall, and adiabatic top wall maintaining constant temperature of cold vertical walls. A penalty finite element method with bi-quadratic rectangular elements has been used to solve the governing mass, momentum and energy equations. The numerical procedure adopted in the present study yields consistent performance over the range of parameters (Rayleigh number Ra, 103 ≤ Ra ≤ 105 and Prandtl number Pr, 0.7 ≤ Pr ≤ 10) with respect to continuous and discontinuous Dirichlet boundary conditions. Non-uniform heating of the bottom wall produces greater heat transfer rate at the center of the bottom wall than uniform heating case for all Rayleigh numbers but average Nusselt number shows overall lower heat transfer rate for non-uniform heating case. Critical Rayleigh numbers for conduction dominant heat transfer cases have been obtained.


Volume 1 ◽  
2004 ◽  
Author(s):  
A. Sabeur-Bendehina ◽  
M. Aounallah ◽  
L. Adjlout ◽  
O. Imine ◽  
B. Imine

In the present work, a numerical study of the effect of non uniform boundary conditions on the heat transfer by natural convection in cavities with partial partitions is investigated for the laminar regime. This problem is solved by using the partial differential equations which are the equation of mass, momentum and energy. The tests were performed for different boundary conditions and different Rayleigh numbers while the Prandtl number was kept constant. Four geometrical configurations were considered namely three and five undulations with increasing and decreasing partition length. The results obtained show that the non uniform temperature in the vertical walls affects the flow and the heat transfer. The mean Nusselt number decreases comparing with the heat transfer in the undulated square cavity without partitions for all non uniform boundary conditions tested.


2011 ◽  
Vol 32 (2) ◽  
pp. 424-439 ◽  
Author(s):  
Sébastien Ferrouillat ◽  
André Bontemps ◽  
João-Paulo Ribeiro ◽  
Jean-Antoine Gruss ◽  
Olivier Soriano

Sign in / Sign up

Export Citation Format

Share Document