scholarly journals Belief Change in Branching Time: AGM-consistency and Iterated Revision

2011 ◽  
Vol 41 (1) ◽  
pp. 201-236 ◽  
Author(s):  
Giacomo Bonanno
Author(s):  
Giovanni Casini ◽  
Thomas Meyer ◽  
Ivan Varzinczak

We present a formal framework for modelling belief change within a nonmonotonic reasoning system. Belief change and non-monotonic reasoning are two areas that are formally closely related, with recent attention being paid towards the analysis of belief change within a non-monotonic environment. In this paper we consider the classical AGM belief change operators, contraction and revision, applied to a defeasible setting in the style of Kraus, Lehmann, and Magidor. The investigation leads us to the consideration of the problem of iterated change, generalising the classical work of Darwiche and Pearl. We characterise a family of operators for iterated revision, followed by an analogous characterisation of operators for iterated contraction. We start considering belief change operators aimed at preserving logical consistency, and then characterise analogous operators aimed at the preservation of coherence—an important notion within the field of logic-based ontologies.


2020 ◽  
Vol 30 (7) ◽  
pp. 1357-1376
Author(s):  
Theofanis Aravanis

Abstract Rational belief-change policies are encoded in the so-called AGM revision functions, defined in the prominent work of Alchourrón, Gärdenfors and Makinson. The present article studies an interesting class of well-behaved AGM revision functions, called herein uniform-revision operators (or UR operators, for short). Each UR operator is uniquely defined by means of a single total preorder over all possible worlds, a fact that in turn entails a significantly lower representational cost, relative to an arbitrary AGM revision function, and an embedded solution to the iterated-revision problem, at no extra representational cost. Herein, we first demonstrate how weaker, more expressive—yet, more representationally expensive—types of uniform revision can be defined. Furthermore, we prove that UR operators, essentially, generalize a significant type of belief change, namely, parametrized-difference revision. Lastly, we show that they are (to some extent) relevance-sensitive, as well as that they respect the so-called principle of kinetic consistency.


2020 ◽  
Vol 69 ◽  
pp. 85-108
Author(s):  
Theofanis Aravanis ◽  
Pavlos Peppas ◽  
Mary-Anne Williams

The AGM paradigm for belief change, as originally introduced by Alchourron, Gärdenfors and Makinson, lacks any guidelines for the process of iterated revision. One of the most influential work addressing this problem is Darwiche and Pearl's approach (DP approach, for short), which, despite its well-documented shortcomings, remains to this date the most dominant. In this article, we make further observations on the DP approach. In particular, we prove that the DP postulates are, in a strong sense, inconsistent with Parikh's relevance-sensitive axiom (P), extending previous initial conflicts. Immediate consequences of this result are that an entire class of intuitive revision operators, which includes Dalal's operator, violates the DP postulates, as well as that the Independence postulate and Spohn's conditionalization are inconsistent with axiom (P). The whole study, essentially, indicates that two fundamental aspects of the revision process, namely, iteration and relevance, are in deep conflict, and opens the discussion for a potential reconciliation towards a comprehensive formal framework for knowledge dynamics.


2021 ◽  
Author(s):  
Antti Gronow ◽  
Maria Brockhaus ◽  
Monica Di Gregorio ◽  
Aasa Karimo ◽  
Tuomas Ylä-Anttila

AbstractPolicy learning can alter the perceptions of both the seriousness and the causes of a policy problem, thus also altering the perceived need to do something about the problem. This then allows for the informed weighing of different policy options. Taking a social network perspective, we argue that the role of social influence as a driver of policy learning has been overlooked in the literature. Network research has shown that normatively laden belief change is likely to occur through complex contagion—a process in which an actor receives social reinforcement from more than one contact in its social network. We test the applicability of this idea to policy learning using node-level network regression models on a unique longitudinal policy network survey dataset concerning the Reducing Deforestation and Forest Degradation (REDD+) initiative in Brazil, Indonesia, and Vietnam. We find that network connections explain policy learning in Indonesia and Vietnam, where the policy subsystems are collaborative, but not in Brazil, where the level of conflict is higher and the subsystem is more established. The results suggest that policy learning is more likely to result from social influence and complex contagion in collaborative than in conflictual settings.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Pengfei Zhang ◽  
Yingfei Gu ◽  
Alexei Kitaev

Abstract We argue that “stringy” effects in a putative gravity-dual picture for SYK-like models are related to the branching time, a kinetic coefficient defined in terms of the retarded kernel. A bound on the branching time is established assuming that the leading diagrams are ladders with thin rungs. Thus, such models are unlikely candidates for sub-AdS holography. In the weak coupling limit, we derive a relation between the branching time, the Lyapunov exponent, and the quasiparticle lifetime using two different approximations.


2018 ◽  
Vol 19 (2) ◽  
pp. 1-42
Author(s):  
Sebastian Binnewies ◽  
Zhiqiang Zhuang ◽  
Kewen Wang ◽  
Bela Stantic
Keyword(s):  

2019 ◽  
Vol 29 (8) ◽  
pp. 1275-1308 ◽  
Author(s):  
Ross Horne ◽  
Alwen Tiu

AbstractThis paper clarifies that linear implication defines a branching-time preorder, preserved in all contexts, when used to compare embeddings of process in non-commutative logic. The logic considered is a first-order extension of the proof system BV featuring a de Morgan dual pair of nominal quantifiers, called BV1. An embedding of π-calculus processes as formulae in BV1 is defined, and the soundness of linear implication in BV1 with respect to a notion of weak simulation in the π -calculus is established. A novel contribution of this work is that we generalise the notion of a ‘left proof’ to a class of formulae sufficiently large to compare embeddings of processes, from which simulating execution steps are extracted. We illustrate the expressive power of BV1 by demonstrating that results extend to the internal π -calculus, where privacy of inputs is guaranteed. We also remark that linear implication is strictly finer than any interleaving preorder.


Sign in / Sign up

Export Citation Format

Share Document